18 research outputs found

    New developments around the Ī¼CRL tool set1 1http://www.cwi.nl/~mcrl

    Get PDF
    AbstractSome recent developments in the Ī¼CRL tool set are presented. New analysis techniques are a symbolic model checker, and a visualizer for huge state spaces. Also various transformations are presented. At symbolic level, theorem proving, data flow analysis, and confluence checking are used to obtain considerable state space reductions. At the concrete level, distributed implementations of state space generation and minimization are recent. We mention the successful application of the tools to the verification of large data-intensive distributed systems

    Distributed Markovian Bisimulation Reduction aimed at CSL Model Checking

    Get PDF
    The verification of quantitative aspects like performance and dependability by means of model checking has become an important and vivid area of research over the past decade.\ud \ud An important result of that research is the logic CSL (continuous stochastic logic) and its corresponding model checking algorithms. The evaluation of properties expressed in CSL makes it necessary to solve large systems of linear (differential) equations, usually by means of numerical analysis. Both the inherent time and space complexity of the numerical algorithms make it practically infeasible to model check systems with more than 100 million states, whereas realistic system models may have billions of states.\ud \ud To overcome this severe restriction, it is important to be able to replace the original state space with a probabilistically equivalent, but smaller one. The most prominent equivalence relation is bisimulation, for which also a stochastic variant exists (Markovian bisimulation). In many cases, this bisimulation allows for a substantial reduction of the state space size. But, these savings in space come at the cost of an increased time complexity. Therefore in this paper a new distributed signature-based algorithm for the computation of the bisimulation quotient of a given state space is introduced.\ud \ud To demonstrate the feasibility of our approach in both a sequential, and more important, in a distributed setting, we have performed a number of case studies

    Distributed Branching Bisimulation Minimization by Inductive Signatures

    Get PDF
    We present a new distributed algorithm for state space minimization modulo branching bisimulation. Like its predecessor it uses signatures for refinement, but the refinement process and the signatures have been optimized to exploit the fact that the input graph contains no tau-loops. The optimization in the refinement process is meant to reduce both the number of iterations needed and the memory requirements. In the former case we cannot prove that there is an improvement, but our experiments show that in many cases the number of iterations is smaller. In the latter case, we can prove that the worst case memory use of the new algorithm is linear in the size of the state space, whereas the old algorithm has a quadratic upper bound. The paper includes a proof of correctness of the new algorithm and the results of a number of experiments that compare the performance of the old and the new algorithms

    Distributed Branching Bisimulation Reduction of State Spaces

    Get PDF
    AbstractEnumerative model checking tools are limited by the size of the state space to which they can be applied. Reduction modulo branching bisimulation usually results in a much smaller state space and therefore enables model checking of much larger state spaces. We present an algorithm for reducing state spaces modulo branching bisimulation which is suitable for distributed implementation. The target architecture is a cluster with a high bandwidth interconnect. The algorithm is based on partition refinement and it works on transition systems which contain cycles of invisible steps, without eliminating strongly connected components first. To avoid fine grained parallelism, the algorithm refines the whole partition instead of just a single block in the partition. We prove correctness and also present some experimental results obtained with single threaded and distributed prototypes

    Efficient and Modular Coalgebraic Partition Refinement

    Full text link
    We present a generic partition refinement algorithm that quotients coalgebraic systems by behavioural equivalence, an important task in system analysis and verification. Coalgebraic generality allows us to cover not only classical relational systems but also, e.g. various forms of weighted systems and furthermore to flexibly combine existing system types. Under assumptions on the type functor that allow representing its finite coalgebras in terms of nodes and edges, our algorithm runs in time O(mā‹…logā”n)\mathcal{O}(m\cdot \log n) where nn and mm are the numbers of nodes and edges, respectively. The generic complexity result and the possibility of combining system types yields a toolbox for efficient partition refinement algorithms. Instances of our generic algorithm match the run-time of the best known algorithms for unlabelled transition systems, Markov chains, deterministic automata (with fixed alphabets), Segala systems, and for color refinement.Comment: Extended journal version of the conference paper arXiv:1705.08362. Beside reorganization of the material, the introductory section 3 is entirely new and the other new section 7 contains new mathematical result

    Solving scheduling problems by untimed model checking

    Get PDF
    In this paper, we show how scheduling problems can be modelled in untimed process algebra, by using special tick actions. A minimal-time trace leading to a particular action, is one that minimizes the number of tick steps. As a result, we can use any (timed or untimed) model checking tool to find shortest schedules. Instantiating this scheme t
    corecore