
Electronic Notes in Theoretical Computer Science 89 No. 1 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume89.html 15 pages

Distributed Branching Bisimulation Reduction
of State Spaces

Stefan Blom 1 ,3 Simona Orzan 2 ,4

Department of Software Engineering, CWI
Amsterdam, The Netherlands

Abstract

Enumerative model checking tools are limited by the size of the state space to which
they can be applied. Reduction modulo branching bisimulation usually results in
a much smaller state space and therefore enables model checking of much larger
state spaces. We present an algorithm for reducing state spaces modulo branching
bisimulation which is suitable for distributed implementation. The target architec-
ture is a cluster with a high bandwidth interconnect. The algorithm is based on
partition refinement and it works on transition systems which contain cycles of in-
visible steps, without eliminating strongly connected components first. To avoid fine
grained parallelism, the algorithm refines the whole partition instead of just a single
block in the partition. We prove correctness and also present some experimental
results obtained with single threaded and distributed prototypes.

1 Introduction

The size of systems that enumerative verification tools can handle is tradi-
tionally very small, and many interesting applications remain out of its scope.
The ways to overcome this situation are the use of symbolic model checking
and/or build more powerful tools. In the context of the latter approach, paral-
lelization (use of shared memory machines) and distribution (use of clusters of
workstations) of verification algorithms is an attractive line to follow. We men-
tion some work done in this direction on both enumerative and symbolic tools:
parallelization of the Murφ verifier [15], distribution of the model checker UP-
PAAL [2], parallel state space generation [8], distributed LTL model checking
[1], parallel µ-calculus model checking [5].

1 Email: sccblom@cwi.nl
2 Email: simona@cwi.nl
3 Partially funded by the ”Systems Validation Centre” project.
4 Funded by the STW-project CES.5009.

c©2003 Published by Elsevier Science B. V. CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82620714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Blom and Orzan

This paper presents a distributed message-passing algorithm for state space
reduction modulo branching bisimulation, following previous work on distri-
bution of strong bisimulation reduction algorithms [3], [4]. It is designed for
a cluster of workstations, which is the most common and cheap architecture
able to offer large memory and processing capabilities.

The most commonly used algorithm for branching bisimulation is the one
of Groote and Vaandrager [10]. It is a very good algorithm, but there are two
reasons why one does not really want to use it for developing a distributed
tool. First, the natural parallelism in the algorithm is very fine grained, which
is a bad idea on the cluster. The often large message latency leads to un-
acceptable performance. The second reason is that the Groote-Vaandrager
algorithm works on transition systems that do not have cycles of silent steps.
Cycle elimination requires detection of strongly connected components, which
is a difficult problem to solve distributedly, although sequentially the well
known Tarjan algorithm [16] solves it in linear time. Our current distributed
algorithm does not rely on the absence of τ cycles, but we learn from sequential
studies that it would perform better on a cycle-free state space. Therefore, it
is interesting future work to integrate an initial distributed cycle elimination
phase.

Stuttering equivalence on Kripke structures (see [6]) is similar to branching
bisimulation on labeled transition systems. However, there are two differences.
First, in Kripke structures the states are labeled instead of the edges. Sec-
ond, stuttering equivalence distinguishes states where an infinite sequence of
invisible steps is possible from states where such a sequence is impossible.
Nevertheless, the algorithm presented by Browne, Clarke and Grumberg and
our own algorithm are similar in the sense that both algorithms are partition
refinement algorithms and apply more or less the same refinement strategy.
However, the way in which the refinements are computed is different. More
precisely, the Browne-Clarke-Grumberg algorithm calls for explicit computa-
tion of the transitive reflexive closure of silent steps whereas our algorithm
avoids doing so.

Overview. The paper is organized as follows. Section 2 revisits some basic
notions. Section 3 explains the theory behind our algorithms. Also, the cor-
rectness of our partition refinement strategy is proven. The single threaded
and distributed implementations are commented in section 4 and their perfor-
mance is discussed in section 5. We conclude (section 6) with a short overview
and a discussion of future work.

2 Preliminaries

In this section we fix a notation for labeled transition systems, we recall the
definition of branching bisimulation [17] and we introduce the terminology of
partition refinement.

We consider transition systems with anonymous/unlabeled states and la-

2

Blom and Orzan

beled edges. We use a fixed set of labels Act. The silent action τ is a member
of Act.

Definition 2.1 A labeled transition system (LTS) is a triple (S,→, s0), con-
sisting of a set of states S, a transition relation →⊆ S×Act×S and an initial
state s0 ∈ S.

We use the following notations:

s a−→ t shorthand for (s, a, t) ∈→ ;
a−→→ the transitive reflexive closure of a−→ ;

a−−→
R

=R ∩ a−→ for any equivalence relation R ;
a−−→
R
→ the transitive reflexive closure of a−−→

R
.

Definition 2.2 [branching bisimulation] Given a labeled transition system
S ≡ (S,−→, s0), a relation R ⊆ S × S is a branching bisimulation if R is
symmetric and ∀s1, s2, t1 ∈ S :

s1 R s2 ∧ s1
a−→ t1 =⇒

a ≡ τ ∧ t1 R s2

∨
∃s′2, t2 ∈ S : s2

τ−→→s′2
a−→ t2 ∧ s1 R s′2 ∧ t1 R t2

For s, t ∈ S, such that a branching bisimulation R exists such that s R t,
we write s ↔b t.

Lemma 2.3 If s0
τ−→ s1

τ−→ s2 · · · sn and s0 ↔b sn then s0 ↔b si, for all
i : 0 ≤ i ≤ n.

Proof. Follows from the stuttering lemma in [17].

✷

Definition 2.4 [partition] Given a set S, π is a partition of S if⋃
π = S and ∀S ′, S ′′ ∈ π : S ′ �= S ′′ =⇒ S ′ ∩ S ′′ = ∅ .

A partition π1 is a refinement of a partition π2 if

∀S1 ∈ π1 : ∃S2 ∈ π2 : S1 ⊂ S2 .

The elements of a partition are referred to as blocks. If π is a partition
then by π(x) we denote the unique block B, such that x ∈ B. We view a
partition π as a relation, by abbreviating π(x) = π(y) as x π y. So τ−→

π
→ stands

for a sequence of 0 or more τ -steps within a block of π.

Given a LTS S ≡ (S,→, s0), let

πb = {{s′ ∈ S | s ↔b s′} | s ∈ S} .

The LTS with the minimal number of states that is branching bisimilar to S
is

Sb ≡ (πb, {(πb(s), a, πb(t)) | s a−→ t ∧ (s ↔b t =⇒ a �= τ)}, πb(s0)) .

3

Blom and Orzan

3 Signature Refinement Theory

Our approach to the problem of state space minimization modulo branching
bisimulation is inspired by previous work on strong bisimulation minimiza-
tion [3], [4] and exploits the same basic idea: partition refinement based on
signature computation.

In the remainder of the paper we work with a fixed LTS (S,→, s0).

Definition 3.1 [signature refinement]

sig(π) : s �→ {(a, π(t)) | ∃s′ : s τ−→
π
→ s′ a−→ t ∧ (a �= τ ∨ π(s) �= π(t))} ;

sigref(π) = {{s′ ∈ S | sig(π)(s) = sig(π)(s′)} | s ∈ S} ;

π0 = {S} ;

πn+1 = sigref(πn) .

A partition π is stable if sigref(π) = π.

The signature refinement algorithm iteratively computes πn+1 (starting of
course with π0) until the stable partition is reached. We devote the rest of
this section to thoroughly proving that this procedure correctly computes the
minimal branching bisimulation. For this, the following three properties are
necessary: the refinement steps must yield refinements; the refinement steps
must keep bisimilar states in the same block; and a stable partition must be
a bisimulation. First, let us see that every πn+1 is a refinement of πn.

Lemma 3.2 ∀n : πn+1 is a refinement of πn .

Proof. By induction on n. As induction hypothesis suppose that for all i < n,
we have that πi+1 is a refinement of πi. We must show that πn+1 is a refinement
of πn. Given s, t, such that πn(s) �= πn(t). There exists k < n such that
πk(s) = πk(t) and πk+1(s) �= πk+1(t). This means that sig(πk)(s) �= sig(πk)(t).
So without loss of generality, there exists (a, B) ∈ sig(πk)(s), such that (a, B) �∈
sig(πk)(t). Let us define two sets of blocks:

T1 = {u ∈ πk(s) | (a, B) ∈ sig(πk)(u)}
T2 = {u ∈ πk(s) | (a, B) �∈ sig(πk)(u)}

We make the following remarks:

T1 ∩ T2 = ∅ ∧ ∀u ∈ πk(s) : πk+1(u) ⊂ T1 ∨ πk+1(u) ⊂ T2

∀u ∈ T2 : ¬∃u′ ∈ B : u a−→ u′(1)

∀u ∈ T2 : ¬∃u′ ∈ T1 : u τ−→ u′(2)

∃s1, · · · , sq ∈ T1 : s τ−→ s1
τ−→ · · · sq

a−→ s′ ∈ B

There are two cases possible:

• If s1, · · · , sq ∈ πn(s) then (a, πn(s′)) ∈ sig(πn+1)(s).
Suppose that sig(πn+1)(s) = sig(πn+1)(t). Then t τ−−→

πn→ t′ a−→ t′′ ∈ πn(s′). But
since t′ ∈ T2 and t′′ ∈ B, this contradicts 1.

4

Blom and Orzan

• If s1, · · · , sr ∈ πn(s) and sr+1 �∈ πn(s) then (τ, πn(sr+1)) ∈ sig(πn+1)(s).
Suppose that sig(πn+1)(s) = sig(πn+1)(t). Then t τ−−→

πn→ t′ τ−→ t′′ ∈ πn(sr+1).
We also have that t′ ∈ T2 and t′′ ∈ T1, which contradicts 2.

✷

The following lemma states that refining a partition where bisimilar states
are in the same block results in a partition where bisimilar states are still in
the same block. (Note that saying that πb is a refinement of π is equivalent
to saying that bisimilar states are in the same block of π.)

Lemma 3.3 Given a partition π, if πb is a refinement of π then πb is a
refinement of sigref(π).

Proof. We must show that for any s0, t0 such that s0 πb t0, we have that
s0 sigref(π) t0. This means that we have to show that sig(π)(s0) = sig(π)(t0),
given that s0 π′ t0. Due to symmetry it suffices to show that sig(π)(s0) ⊆
sig(π)(t0).

Given (a, B) ∈ sig(π)(s0), we can find s0
τ−→
π

s1
τ−→
π

· · · sn
a−→ s′, such that

π(s) = B and (a �= τ ∨ π(s0) �= π(s)).

Given ti such that ti πb si and i < n, we define ti+1 by distinguishing two
cases:

• If si+1 πb si then let ti+1 = ti. We have that si+1 πb ti+1 and that ti
τ−→
π
→ ti+1.

• Otherwise, due to bisimulation and the stuttering lemma we can find ti+1

such that ti
τ−−→
πb
→ t τ−→ ti+1 and si+1 πb ti+1. So for some t′i, we have ti

τ−−→
πb

→ t′i
τ−→ ti+1. We now have that t′i πb ti πb si π si+1 πb ti+1 ..

Because πb is a refinement of π, we can conclude that t′i π ti+1. Thus, we
have that t′i

τ−→
π

ti+1. Again because b(π) is a refinement of π, we have that

ti
τ−−→
π′→ t′i, so we have ti

τ−−→
π′→ ti+1.

If π(s0) �= π(s′) then πb(sn) �= πb(s′), because π(s0) = π(sn) and πb is a
refinement of π. So we have a �= τ ∨ πb(s0) �= πb(s′). We also have sn πb tn,
so by definition of bisimulation and the stuttering lemma there exists t′ such
that tn

τ−−→
πb
→ a−→ t′ and s′ πb t′. As πb is a refinement of π this implies that

tn
τ−→
π
→ a−→ t′ and s′ π t′. In turn this implies t0

τ−→
π
→ a−→ t′, which implies that

(a, B) ∈ sig(π)(t0).

✷

Finally, we need to establish that a stable partition is a branching bisim-
ulation.

Lemma 3.4 If π is a stable partition then π is a branching bisimulation.

Proof. Given s π t and s a−→ s′. If a = τ and s π s′ then s′ π t′. Otherwise
(a, π(s′)) ∈ sig(π)(s). Because the partition is stable we have sig(π)(s) =

5

Blom and Orzan

sig(π)(t), so for some t′ we have t τ−→
π
→ t′ a−→ t′′ with s′ π t′′ and s π t′.

✷

From these three lemmas, the correctness of the partition refinement algo-
rithm for finite LTSs follows easily:

Theorem 3.5 Given a finite LTS, the following program computes πb in π:

π := {S}
repeat

π′ := π
π := sigref(π)

until π = π′

Proof. After the nth iteration of the loop, the variable π contains πn. If the
loop exits after n iterations then the partition π is stable. Due to Lemma 3.4
the resulting π is a branching bisimulation. Due to Lemma 3.3 it must be πb.
From Lemma 3.2 we get that sigref(π) is a refinement of π. This means that
if sigref(π) is not the same as π then sigref(π) contains more blocks than π.
As the number of blocks is limited by the number of states, termination of the
loop is guaranteed.

✷

For an LTS with n states and m transitions, the worst case complexity of
our algorithm is O(n2m) time and O(nm) space. This is much worse than the
O(n(n+m)) time and O(n+m) space complexity of the Groote-Vaandrager
algorithm. However, we expect that for typical state spaces the expected
complexity of both algorithms is O(log(n)(n+m)) time and O(n+m) space.
Next we’ll analyze the complexity of an example, which is near to the worst
case.

Example 3.6 Given a natural number N . Consider the the LTS with states
1, 1′, 2, 2′ · · · , N, N ′, transitions i a−→ i′, i + 1 τ−→ i, 1 τ−→ N , (i + 1)′ b−→ i′ and
initial state N . The signatures for this LTS are

sig(πk)(i) = {(a, πk(1′)), · · · , (a, πk(N ′))}
sig(πk)(1′) = ∅
sig(πk)((i + 1)′) = {(b, πk(i′))}

and the partitions are

π0 = {{1, 1′, 2, 2′ · · · , N, N ′}}
πk = {{1′}, · · · , {k′}, {(k + 1)′, · · · , N ′}, {1, · · · , N}}

This means that N + 1 iterations are needed to get to a stable refinement of
π0. The cost of computing the signature of i′ is constant in each iteration
because the signature size is constant. However, the cost of computing the
signature of i in the kth linearly grows with k because the size of the signature

6

Blom and Orzan

Table 1
Single threaded version of the algorithm.

reduce()
for all states s do pi[s]:=0 end for
repeat

// compute signatures
for all states s do sig[s]:=∅ end for
for all transitions (s,a,t) do

if not (a=τ and pi[s]=pi[t]) then insert(s,a,pi[t]) end if
end for
// reassign pi according to sig
hashtable := ∅
count:=0
for all states s do

if not sig[s] in keys(hashtable) then
insert(hashtable,sig[s],count)
inc(count)

end if
end for
for all states s do pi[s]:=lookup(hashtable,sig[s]) end for

until pi is stable

insert(t,a,ID)
if not((a,ID) ∈ sig[t]) then

sig[t]:=sig[t] ∪ {(a,ID)}
for all s such that s τ−→t and pi[s]=pi[t] do

insert(s,a,ID)
end for

end if

is k. As we have N signatures of each kind, we get time complexity O(N3)
and space complexity O(N2).

4 Signature Refinement Algorithms

In this section, we discuss a few algorithms for branching bisimulation mini-
mization based on signature refinement. These algorithms are similar to those
for strong bisimulation in [3] and [4]. So for details about data distribution
and computation of partitions from signatures, we refer to those papers.

4.1 Single Threaded

We now describe a single threaded implementation (depicted in Table 1) of
the algorithm outlined in Theorem 3.5. To represent partitions we assign a
unique (integer) identifier to each block and then represent the partition as an

7

Blom and Orzan

Table 2
Distributed version of the algorithm.

1 reduce()
2 for all states s parallel do pi[s]:=0 end for
3 repeat
4 for all states s parallel do
5 sig[s]:={(a, pi[t]) | s a−→ t ∧ (a �= τ ∨ pi[s] �= pi[t])}
6 pred[s] := {t | t τ−→ s ∧ pi[s] = pi[t]}
7 end for
8 new:=sig
9 repeat
10 for all states s parallel do nextnew[s]:=∅ end for
11 for all states s parallel do
12 for all states t in pred[s] do
13 nextnew[t]:=nextnew[t] ∪ (new[s] \ sig[t])

14 sig[t]:=sig[t] ∪ new[s]

15 end for
16 end for
17 new:=nextnew
18 until ∀s : new[s] = ∅
19 reassign pi according to sig
20 until pi is stable

array of block identifier, which is indexed by states. Thus, the initial partition
can be represented as an array of zeros. The definition of signature consider
transitions of all states reachable by τ -steps within blocks. Explicitly com-
puting sets of reachable states should be avoided because this would require
too much time and memory. So instead of starting at a state and searching
the reachable states for information, we start with the information and prop-
agate it back along the τ -steps within blocks using a depth first traversal.
Then once all signatures have been computed, unique identifiers are assigned
to signatures and from these identifiers the next partition is built. Based on
the number of identifiers, we can decide if the partition is stable and iterate
if necessary.

4.2 Distributed

Let us now see how a distributed version of the algorithm can be implemented.

The single threaded algorithm uses sequential depth first traversal for prop-
agating signature information. As the order of signature propagation is irrele-
vant, we chose breadth first propagation for the distributed algorithm in Table
2. In order to present the global picture in a clear way, we write it as a shared
memory algorithm and abstracts away the actual location of data.

In our distributed memory implementation, the states are divided among

8

Blom and Orzan

ab

τ

τ

new
sig

new
sig

new
sig {}

{}

{(a,0)}{(b,0)}
{(b,0)} {(a,0)}

ab

τ

τ

new
sig

new
sig

new
sig {}

{}

{(b,0),(a,0)} {(a,0),(b,0)}
{} {}

ab

τ

τ

new
sig

new
sig

new
sig {}

{}

{(b,0),(a,0)} {(a,0),(b,0)}
{(b,0)}{(a,0)}

Fig. 1. The iterations of signature computation.

a set of workers and we may apply the function owner to a state to get the
worker which owns the state. Each worker stores the parts of the arrays
corresponding to its owned states. This means that the underlined references
to arrays are potentially remote references. There are remote references to
three arrays: pi, newsig and sig. In our distributed implementation remote
references to pi are made local by copying the relevant parts of pi. That is,
every worker keeps not only the pi data for its owned states, but also for the
successor states of its owned states. Remote access to newsig and sig is solved
in a different way. Instead of letting the owner of the new array perform the
assignments, we let the owner of the new array send a message containing s, t,
and new[s] to the owner of the newsig and sig arrays. Upon receiving such a
message the owner of the newsig and sig arrays will perform the assignments.
This is correct because the order of the assignments to nextnew and sig does
not matter as long as they are atomic (no other assignments carried out in
between).

Message passing replacements for lines 4-7 and 11-16 can be found in tables
3 and 4, respectively. These replacements consist of multiple threads which are
separated by ‖. The receive statement blocks until there is a message returning
true or until there are no further messages in the system and no further sends
can be initiated in which case they return false. For performance reasons
the actual implementation buffers a few kB worth of small messages before
sending.

In Fig. 1 we have illustrated the process of signature computation. When
the computation starts every state is in partition 0. Initialy, the signature sets
contain the transition,ID pairs which are possible in every state and the new

9

Blom and Orzan

Table 3
Message replacement for lines 4-7.

for all states t parallel do sig[t]:=∅ end for
for all states t parallel do

for all s,a such that s a−→ t do
send [”pi”,s,a,t,pi[t]] to owner(s)

end for
end for
‖
while receive [”pi”,s,a,t,id]

pi[t]:=id
if a = τ and pi[s] = pi[t] then

send[”pred”,t,s] to owner(t)
else

sig[s]:=sig[s]∪{(a,ID)}
end if

end while
‖
while receive [”pred”,t,s]

pred[t]:=pred[t]∪{s}
end while

sets are set to the same value. In every iteration, the new sets are forwarded
along the inverse of the invisible τ -steps, added to the signature sets and the
new elements are added to the new sets. So for example in the first iteration
(b,0) is sent along the top edge, inserted in the signature of the right state
and because it is new it is also put into new. In the second iteration it is sent
along the bottom τ -edge and inserted, but because it was already present it
is not added to new. This forwarding continues until the new sets are empty.

We have omitted the code for reassigning pi according to sig, because
the distributed assignment works the same as the single threaded, with the
exception that hashtable lookups are performed by means of message passing
rather than by means of memory access.

5 Experiments

We have built prototype implementations of both sequential and distributed
branching bisimulation minimization algorithms. The distributed implemen-
tation uses MPI (Message Passing Interface) for communication. The tests
were made on a cluster of 8 dual AMD Athlon MP1600+ machines with 2G
memory each, running Linux and connected by gigabit ethernet.

The examples used are the state space of the Firewire Link Layer protocol
[11] (1394-LL), the Firewire Leader Election protocol [14] with 14 nodes (1394-
LE), a cache coherence protocol [13] (CCP-2p3t), and a distributed lift system

10

Blom and Orzan

Table 4
Message passing code for lines 11 - 16.

for all states t parallel do
for all states s in pred[t] do

for all (a,ID) in new[t] do
send [”new”,s,a,ID] to owner(s)

end for
end for

end for
‖
while receive [”new”,s,a,ID]

if not (a,ID) in sig[s] then
sig[s]:=sig[s]∪{(a,ID)}
nextnew[s]:=nextnew[s]∪{(a,ID)}

end if
end while

Table 5
A comparison of sequential implementations.

problem size bcg-min lts-min lts-min lts-min lts-min number of

1.4 cycle dfs iter mark iterations

states time time time time time

transitions mem mem mem mem mem

1394-LL 0.37 106 2.27s 0.98s 0.97s 2.5s 1.16s 6

0.68 106 2.2M 2.8M 3.5M 3.5M 4M

lift5 2.2 106 2m42s 1m18s 1m20s 9m03s 2m30s 16

8.7 106 174M 108M 152M 116M 410M

1394-LE 2.5 106 1m18s 1m11s 1m08s 1m25s 1m14s 2

17.6 106 316M 220M 411M 220M 340M

CCP-2p3t 7.8 106 19m26s 22m50s 62m52s - - 46

59 106 1051M 736M 968M - -

with 5 and 6 legs [9] (lift5, lift6).

5.1 Single-threaded implementations

In order to investigate possibilities, we have implemented four variants of
the branching reduction scheme based on signatures. The one called cycle
eliminates the τ cycles before starting the iterations series, while dfs and iter
do not. Further, iter computes the signatures by performing propagation sub-
iterations, as done in the distributed implementation. Finally, mark employs
a marking procedure that proved helpful in the strong bisimulation reduction

11

Blom and Orzan

case [4]. Its basic idea is to restrict the signature recomputation effort of an
iteration to those signatures that changed for sure.

Table 5 displays the total run times (read, reduction and write) of these
implementations and the maximum amount of memory occupied. To show
that our signature refinement scheme is comparable to the block based refine-
ment scheme, we include bcg min (the reduction tool belonging to the CADP
toolset [7]) in this brief comparison. For the CCP-2p3t example, the iter
implementation takes too much time and mark runs out of memory. The rea-
son for the iter implementation taking too much time was diagnosed as an
inefficient implementation of one sub-routine. Thus, we could avoid making
the same mistake in the distributed implementation. We stopped the single
threaded tool after more than 24 hours, with only half the job completed. The
distributed tool completes the task in roughly 12 minutes on 16 processors.

The first conclusion of this sequential study is that the signature based
reduction algorithm works for branching bisimulation. The cycle elimination
seems to be an advantage (cycle vs. dfs), therefore it might be interesting to
use it also in the distributed version. From the performance data of iter it
is clear that there is no serious efficiency loss by using mechanisms specific
to a distributed implementation. The marking procedure does not deliver
spectacular improvements, in fact no improvements at all. The explanation
is that this procedure is efficient in the iterations when few changes happen –
typically towards the end of the reduction process. But the branching bisim-
ulation algorithm usually stabilizes in a rather small number of iterations,
therefore the administrative penalties paid in the first iterations are not re-
gained later. (1394-LL, for instance, stabilizes in 73 iterations for strong and
in 6 for branching; lift5 in 86 for strong, 16 for branching; 1394-LE in 51 for
strong and only 2 for branching.)

5.2 Distributed implementation

Figure 5.2 shows the speedup of the distributed prototype (we name it DBBR -
Distributed Branching Bisimulation Reduction) when run with 8,10,12,14 and
16 processors. For comparison, we also show the speedup of a similar dis-
tributed tool developed for strong bisimulation reduction, DSBR (Distributed
Strong Bisimulation Reduction). That tool uses essentially the same idea –
compute all states’ signatures and perform block splitting based on them –
and is described in detail in [3].

We also gathered data on the approximate total memory used by the two
distributed tools when reducing lift6. DBBR ’s memory needs grow slowly
from 7232M for 8 processors to 7656M for 16 processors, while DSBR used
5752M (8 processors) up to 5958M (16). This shows that the memory use per
worker decreases almost linearly with the number of workers.

As mentioned in the previous subsection, the stable partition with respect
to branching bisimulation is most of the time reached in (a lot) less iterations

12

Blom and Orzan

 500

 1000

 2000

 8 16

tim
e(

s)

number of CPUs

lift6 runtimes

DBBR on cluster, reduction time
Naive DSBR on cluster, reduction time

DBBR with BFS sorted input, on cluster, reduction time
linear speedup

Fig. 2. Speedup for the reduction of lift6 (34 mil. states, 165 mil. transitions)

than the stable partition with respect to strong bisimulation. This explains
why, although a DBBR iteration takes longer than a DSBR one, DBBR needs
on the whole less time. As regard to memory use, DBBR is in all cases more
expensive than DSBR . This is due to two factors. Firstly, the signatures for
the branching bisimulation case are in general larger, since the signatures of a
state x must include the signatures of all states reachable by silent steps. And
secondly, our current implementation is a first prototype, not yet optimized
for memory use. We expect that a more careful implementation will visibly
reduce this difference.

A more interesting comparison is between the run times of DBBR for ran-
dom and for sorted input. (Random meaning a copy without caring about
the order and sorted means sorted into the same BFS order written by our
distributed state space generation tool.) The data indicates a much better per-
formance in the case when the distribution of the LTSs states to the workers
is done on BFS order. This means that we should investigate whether other
orders exist, which can easily be computed and show even better performance.

6 Conclusion

The work presented here continues the series of distributed minimization algo-
rithms started with [3], [4]. In this paper we considered branching bisimulation
as reduction relation and we developed a signature based partition refinement
algorithm for it, that works on LTSs with cycles of invisible steps. We proved
its correctness, briefly described its implementation and showed by some ex-
perimental results that it scales up both in time and memory use.

As future work, we mention the possibility of introducing a distributed
τ -cycle elimination preprocessing phase, from which the efficiency of the cur-
rent tool could benefit. Another possible direction is the development of

13

Blom and Orzan

(distributed) signature refinement algorithms for minimization modulo weak
bisimulation and safety equivalence. We also consider building a distributed
model checker in the style of XTL (see [12]) in order to have a complete
distributed model checking solution for our µCRL toolset.

References

[1] Barnat, J., L. Brim and J. Sťŕıbrná, Distributed LTL model-checking in SPIN,
in: M. B. Dwyer, editor, Proceedings of the 8th International SPIN Workshop
(SPIN’01), LNCS 2057 (2001), pp. 200–216.

[2] Behrmann, G., T. Hune and F. Vaandrager, Distributed timed model checking -
How the search order matters, in: A. Emerson and A. Sistla, editors, Proceedings
of the 12th International Conference on Computer Aided Verification (CAV’00),
LNCS 1855 (2000), pp. 216–231.

[3] Blom, S. and S. Orzan, A distributed algorithm for strong bisimulation reduction
of state spaces, in: L. Brim and O. Grumberg, editors, Proceedings of PDMC’02,
ENTCS 68 (2002).

[4] Blom, S. and S. Orzan, Distributed state space minimization, in: F. Aagesen,
T. Arts and W. Fokkink, editors, Proceedings of FMICS’03, ENTCS 80 (2003),
to appear.

[5] Bollig, B., M. Leucker and M. Weber, Parallel model checking for the alternation
free µ-calculus, in: T. Margaria and W. Yi, editors, Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’01), LNCS 2031 (2001), pp. 543–558.

[6] Browne, M., E. Clarke and O. Grumberg,Characterizing finite Kripke structures
in propositional temporal logic, Theoretical Computer Science 59 (1988),
pp. 115–131.

[7] Fernandez, J.-C., H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu and
M. Sighireanu, CADP – a protocol validation and verification toolbox, in:
Proceedings of the 8th International Conference on Computer Aided Verification
(CAV’96), LNCS 1102 (1996), pp. 437–440.

[8] Garavel, H., R. Mateescu and I. Smarandache, Parallel state space construction
for model-checking, in: M. Dwyer, editor, Proceedings of the 8th International
SPIN Workshop on Model Checking of Software (SPIN’01), LNCS 2057 (2001),
pp. 217–234.

[9] Groote, J., J. Pang and A. Wouters, Analysis of a distributed system for lifting
trucks, Journal of Logic and Algebraic Programming 55 (2003), pp. 21–56.

[10] Groote, J. and F. Vaandrager, An efficient algorithm for branching bisimulation
and stuttering equivalence, in: M.S.Paterson, editor, Proceedings of the 17th
ICALP, LNCS 443 (1990), pp. 626–638.

14

Blom and Orzan

[11] Luttik, S., Description and formal specification of the Link Layer of P1394, in:
I. Lovrek, editor, Proceedings of the 2nd International Workshop on Applied
Formal Methods in System Design, 1997.

[12] Mateescu, R. and H. Garavel, XTL: A meta-language and tool for temporal
logic model-checking, in: T. Margaria and B. Steffen, editors, Proceedings of the
International Workshop on Software Tools for Technology Transfer (STTT’98),
number NS-98-4 in BRICS Notes Series, 1998.

[13] Pang, J., W. Fokkink, R. Hofman and R. Veldema, Model checking a cache
coherence protocol for a java DSM implementation, in: Proceedings of the 8th
International Workshop on Formal Methods for Parallel Programming: Theory
and Applications (FMPPTA’03) (2003).

[14] Romijn, J., Model checking the HAVi leader election protocol, Technical Report
SEN-R9915, CWI (1999).

[15] Stern, U. and D. Dill, Parallelizing the Murφ verifier, in: O. Grumberg, editor,
Proceedings of the 9th International Conference on Computer Aided Verification
(CAV’97), LNCS 1254, 1997, pp. 256–278.

[16] Tarjan, R., Depth-first search and linear graph algorithms, SIAM Journal of
Computing 1 (1972), pp. 146–160.

[17] van Glabbeek, R. and W. Weijland, Branching time and abstraction in
bisimulation semantics, Journal of the ACM 43(3) (1996), pp. 555–600.

15

