4,989 research outputs found

    Data production models for the CDF experiment

    Get PDF
    The data production for the CDF experiment is conducted on a large Linux PC farm designed to meet the needs of data collection at a maximum rate of 40 MByte/sec. We present two data production models that exploits advances in computing and communication technology. The first production farm is a centralized system that has achieved a stable data processing rate of approximately 2 TByte per day. The recently upgraded farm is migrated to the SAM (Sequential Access to data via Metadata) data handling system. The software and hardware of the CDF production farms has been successful in providing large computing and data throughput capacity to the experiment.Comment: 8 pages, 9 figures; presented at HPC Asia2005, Beijing, China, Nov 30 - Dec 3, 200

    Measuring and Managing Answer Quality for Online Data-Intensive Services

    Full text link
    Online data-intensive services parallelize query execution across distributed software components. Interactive response time is a priority, so online query executions return answers without waiting for slow running components to finish. However, data from these slow components could lead to better answers. We propose Ubora, an approach to measure the effect of slow running components on the quality of answers. Ubora randomly samples online queries and executes them twice. The first execution elides data from slow components and provides fast online answers; the second execution waits for all components to complete. Ubora uses memoization to speed up mature executions by replaying network messages exchanged between components. Our systems-level implementation works for a wide range of platforms, including Hadoop/Yarn, Apache Lucene, the EasyRec Recommendation Engine, and the OpenEphyra question answering system. Ubora computes answer quality much faster than competing approaches that do not use memoization. With Ubora, we show that answer quality can and should be used to guide online admission control. Our adaptive controller processed 37% more queries than a competing controller guided by the rate of timeouts.Comment: Technical Repor

    Don't Thrash: How to Cache Your Hash on Flash

    Full text link
    This paper presents new alternatives to the well-known Bloom filter data structure. The Bloom filter, a compact data structure supporting set insertion and membership queries, has found wide application in databases, storage systems, and networks. Because the Bloom filter performs frequent random reads and writes, it is used almost exclusively in RAM, limiting the size of the sets it can represent. This paper first describes the quotient filter, which supports the basic operations of the Bloom filter, achieving roughly comparable performance in terms of space and time, but with better data locality. Operations on the quotient filter require only a small number of contiguous accesses. The quotient filter has other advantages over the Bloom filter: it supports deletions, it can be dynamically resized, and two quotient filters can be efficiently merged. The paper then gives two data structures, the buffered quotient filter and the cascade filter, which exploit the quotient filter advantages and thus serve as SSD-optimized alternatives to the Bloom filter. The cascade filter has better asymptotic I/O performance than the buffered quotient filter, but the buffered quotient filter outperforms the cascade filter on small to medium data sets. Both data structures significantly outperform recently-proposed SSD-optimized Bloom filter variants, such as the elevator Bloom filter, buffered Bloom filter, and forest-structured Bloom filter. In experiments, the cascade filter and buffered quotient filter performed insertions 8.6-11 times faster than the fastest Bloom filter variant and performed lookups 0.94-2.56 times faster.Comment: VLDB201

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Data processing model for the CDF experiment

    Get PDF
    The data processing model for the CDF experiment is described. Data processing reconstructs events from parallel data streams taken with different combinations of physics event triggers and further splits the events into datasets of specialized physics datasets. The design of the processing control system faces strict requirements on bookkeeping records, which trace the status of data files and event contents during processing and storage. The computing architecture was updated to meet the mass data flow of the Run II data collection, recently upgraded to a maximum rate of 40 MByte/sec. The data processing facility consists of a large cluster of Linux computers with data movement managed by the CDF data handling system to a multi-petaByte Enstore tape library. The latest processing cycle has achieved a stable speed of 35 MByte/sec (3 TByte/day). It can be readily scaled by increasing CPU and data-handling capacity as required.Comment: 12 pages, 10 figures, submitted to IEEE-TN

    Cooperative Caching for Multimedia Streaming in Overlay Networks

    Get PDF
    Traditional data caching, such as web caching, only focuses on how to boost the hit rate of requested objects in caches, and therefore, how to reduce the initial delay for object retrieval. However, for multimedia objects, not only reducing the delay of object retrieval, but also provisioning reasonably stable network bandwidth to clients, while the fetching of the cached objects goes on, is important as well. In this paper, we propose our cooperative caching scheme for a multimedia delivery scenario, supporting a large number of peers over peer-to-peer overlay networks. In order to facilitate multimedia streaming and downloading service from servers, our caching scheme (1) determines the appropriate availability of cached stream segments in a cache community, (2) determines the appropriate peer for cache replacement, and (3) performs bandwidth-aware and availability-aware cache replacement. By doing so, it achieves (1) small delay of stream retrieval, (2) stable bandwidth provisioning during retrieval session, and (3) load balancing of clients' requests among peers
    • …
    corecore