1,028 research outputs found

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    High performance constraint satisfaction problem solving: State-recomputation versus state-copying.

    Get PDF
    Constraint Satisfaction Problems (CSPs) in Artificial Intelligence have been an important focus of research and have been a useful model for various applications such as scheduling, image processing and machine vision. CSPs are mathematical problems that try to search values for variables according to constraints. There are many approaches for searching solutions of non-binary CSPs. Traditionally, most CSP methods rely on a single processor. With the increasing popularization of multiple processors, parallel search methods are becoming alternatives to speed up the search process. Parallel search is a subfield of artificial intelligence in which the constraint satisfaction problem is centralized whereas the search processes are distributed among the different processors. In this thesis we present a forward checking algorithm solving non-binary CSPs by distributing different branches to different processors via message passing interface and execute it on a high performance distributed system called SHARCNET. However, the problem is how to efficiently communicate the state of the search among processors. Two communication models, namely, state-recomputation and state-copying via message passing, are implemented and evaluated. This thesis investigates the behaviour of communication from one process to another. The experimental results demonstrate that the state-recomputation model with tighter constraints obtains a better performance than the state-copying model, but when constraints become looser, the state-copying model is a better choice.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .Y364. Source: Masters Abstracts International, Volume: 44-01, page: 0417. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Sensor networks and distributed CSP: communication, computation and complexity

    Get PDF
    We introduce SensorDCSP, a naturally distributed benchmark based on a real-world application that arises in the context of networked distributed systems. In order to study the performance of Distributed CSP (DisCSP) algorithms in a truly distributed setting, we use a discrete-event network simulator, which allows us to model the impact of different network traffic conditions on the performance of the algorithms. We consider two complete DisCSP algorithms: asynchronous backtracking (ABT) and asynchronous weak commitment search (AWC), and perform performance comparison for these algorithms on both satisfiable and unsatisfiable instances of SensorDCSP. We found that random delays (due to network traffic or in some cases actively introduced by the agents) combined with a dynamic decentralized restart strategy can improve the performance of DisCSP algorithms. In addition, we introduce GSensorDCSP, a plain-embedded version of SensorDCSP that is closely related to various real-life dynamic tracking systems. We perform both analytical and empirical study of this benchmark domain. In particular, this benchmark allows us to study the attractiveness of solution repairing for solving a sequence of DisCSPs that represent the dynamic tracking of a set of moving objects.This work was supported in part by AFOSR (F49620-01-1-0076, Intelligent Information Systems Institute and MURI F49620-01-1-0361), CICYT (TIC2001-1577-C03-03 and TIC2003-00950), DARPA (F30602-00-2- 0530), an NSF CAREER award (IIS-9734128), and an Alfred P. Sloan Research Fellowship. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the US Government

    Random subcubes as a toy model for constraint satisfaction problems

    Full text link
    We present an exactly solvable random-subcube model inspired by the structure of hard constraint satisfaction and optimization problems. Our model reproduces the structure of the solution space of the random k-satisfiability and k-coloring problems, and undergoes the same phase transitions as these problems. The comparison becomes quantitative in the large-k limit. Distance properties, as well the x-satisfiability threshold, are studied. The model is also generalized to define a continuous energy landscape useful for studying several aspects of glassy dynamics.Comment: 21 pages, 4 figure
    • …
    corecore