947 research outputs found

    Reinforcement learning for resource allocation in LEO satellite networks

    No full text
    Published versio

    Internet of Satellites (IoSat): analysis of network models and routing protocol requirements

    Get PDF
    The space segment has been evolved from monolithic to distributed satellite systems. One of these distributed systems is called the federated satellite system (FSS) which aims at establishing a win-win collaboration between satellites to improve their mission performance by using the unused on-board resources. The FSS concept requires sporadic and direct communications between satellites, using inter satellite links. However, this point-to-point communication is temporal and thus it can break existent federations. Therefore, the conception of a multi-hop scenario needs to be addressed. This is the goal of the Internet of satellites (IoSat) paradigm which, as opposed to a common backbone, proposes the creation of a network using a peer-to-peer architecture. In particular, the same satellites take part of the network by establishing intermediate collaborations to deploy a FSS. This paradigm supposes a major challenge in terms of network definition and routing protocol. Therefore, this paper not only details the IoSat paradigm, but it also analyses the different satellite network models. Furthermore, it evaluates the routing protocol candidates that could be used to implement the IoSat paradigm.Peer ReviewedPostprint (author's final draft

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Dtn and non-dtn routing protocols for inter-cubesat communications: A comprehensive survey

    Get PDF
    CubeSats, which are limited by size and mass, have limited functionality. These miniaturised satellites suffer from a low power budget, short radio range, low transmission speeds, and limited data storage capacity. Regardless of these limitations, CubeSats have been deployed to carry out many research missions, such as gravity mapping and the tracking of forest fires. One method of increasing their functionality and reducing their limitations is to form CubeSat networks, or swarms, where many CubeSats work together to carry out a mission. Nevertheless, the network might have intermittent connectivity and, accordingly, data communication becomes challenging in such a disjointed network where there is no contemporaneous path between source and destination due to satellites’ mobility pattern and given the limitations of range. In this survey, various inter-satellite routing protocols that are Delay Tolerant (DTN) and Non Delay Tolerant (Non-DTN) are considered. DTN routing protocols are considered for the scenarios where the network is disjointed with no contemporaneous path between a source and a destination. We qualitatively compare all of the above routing protocols to highlight the positive and negative points under different network constraints. We conclude that the performance of routing protocols used in aerospace communications is highly dependent on the evolving topology of the network over time. Additionally, the Non-DTN routing protocols will work efficiently if the network is dense enough to establish reliable links between CubeSats. Emphasis is also given to network capacity in terms of how buffer, energy, bandwidth, and contact duration influence the performance of DTN routing protocols, where, for example, flooding-based DTN protocols can provide superior performance in terms of maximizing delivery ratio and minimizing a delivery delay. However, such protocols are not suitable for CubeSat networks, as they harvest the limited resources of these tiny satellites and they are contrasted with forwarding-based DTN routing protocols, which are resource-friendly and produce minimum overheads on the cost of degraded delivery probability. From the literature, we found that quota-based DTN routing protocols can provide the necessary balance between delivery delay and overhead costs in many CubeSat missions

    Distributed Probabilistic Congestion Control in LEO Satellite Networks

    Full text link
    Satellite communication in Low Earth Orbiting (LEO) constellations is an emerging topic of interest. Due to the high number of LEO satellites in a typical constellation, a centralized algorithm for minimum-delay packet routing would incur significant signaling and computational overhead. We can exploit the deterministic topology of the satellite constellation to calculate the minimum-delay path between any two nodes in the satellite network. But that does not take into account the traffic information at the nodes along this minimum-delay path. We propose a distributed probabilistic congestion control scheme to minimize end-to-end delay. In the proposed scheme, each satellite, while sending a packet to its neighbor, adds a header with a simple metric indicating its own congestion level. The decision to route packets is taken based on the latest traffic information received from the neighbors. We build this algorithm onto the Datagram Routing Algorithm (DRA), which provides the minimum delay path, and the decision for the next hop is taken by the congestion control algorithm. We compare the proposed congestion control mechanism with the existing congestion control used by the DRA via simulations, and show improvements over the same.Comment: 9 pages, 10 figures, conferenc

    Reducing power consumption in LEO satellite network

    Get PDF
    Current low earth orbit (LEO) satellite network display poor power efficiency, running network devices at full capacity all the time regardless of the traffic matrix and the distribution of the population over the Globe. Most of the research on energy efficiency of LEO satellites has focused on component level or link level. Therefore, this kind of research is not holistic to try to look at the satellite system as a single node. To enhance the energy efficiency. The solution should exploits multipath routing and load balancing. LEO network is overprovisioned, and hence selectively shutting down some satellite nodes and links during off-peaks hours seems like a good way to reduce energy consumption. In this paper, we exploit the fact that due to geographical and climatic conditions, some satellite links are expected to be loaded with data while others remain unused. Our approach is to power down satellite nodes and links during period of low traffic, while guaranteeing the connectivity and QoS. Finding the optimal solution is NP-problem and therefore, we explore in this work two heuristic algorithms. We evaluate our heuristics on a realistic LEO topology and real traffic matrices. Simulation results show that the power saving can be significant
    • …
    corecore