1,490 research outputs found

    A Nonlinear Projection Neural Network for Solving Interval Quadratic Programming Problems and Its Stability Analysis

    Get PDF
    This paper presents a nonlinear projection neural network for solving interval quadratic programs subject to box-set constraints in engineering applications. Based on the Saddle point theorem, the equilibrium point of the proposed neural network is proved to be equivalent to the optimal solution of the interval quadratic optimization problems. By employing Lyapunov function approach, the global exponential stability of the proposed neural network is analyzed. Two illustrative examples are provided to show the feasibility and the efficiency of the proposed method in this paper

    Universal Convexification via Risk-Aversion

    Full text link
    We develop a framework for convexifying a fairly general class of optimization problems. Under additional assumptions, we analyze the suboptimality of the solution to the convexified problem relative to the original nonconvex problem and prove additive approximation guarantees. We then develop algorithms based on stochastic gradient methods to solve the resulting optimization problems and show bounds on convergence rates. %We show a simple application of this framework to supervised learning, where one can perform integration explicitly and can use standard (non-stochastic) optimization algorithms with better convergence guarantees. We then extend this framework to apply to a general class of discrete-time dynamical systems. In this context, our convexification approach falls under the well-studied paradigm of risk-sensitive Markov Decision Processes. We derive the first known model-based and model-free policy gradient optimization algorithms with guaranteed convergence to the optimal solution. Finally, we present numerical results validating our formulation in different applications

    Structured Prediction Problem Archive

    Get PDF
    Structured prediction problems are one of the fundamental tools in machinelearning. In order to facilitate algorithm development for their numericalsolution, we collect in one place a large number of datasets in easy to readformats for a diverse set of problem classes. We provide archival links todatasets, description of the considered problems and problem formats, and ashort summary of problem characteristics including size, number of instancesetc. For reference we also give a non-exhaustive selection of algorithmsproposed in the literature for their solution. We hope that this centralrepository will make benchmarking and comparison to established works easier.We welcome submission of interesting new datasets and algorithms for inclusionin our archive.<br

    A Nonlinear Projection Neural Network for Solving Interval Quadratic Programming Problems and Its Stability Analysis

    Get PDF
    This paper presents a nonlinear projection neural network for solving interval quadratic programs subject to box-set constraints in engineering applications. Based on the Saddle point theorem, the equilibrium point of the proposed neural network is proved to be equivalent to the optimal solution of the interval quadratic optimization problems. By employing Lyapunov function approach, the global exponential stability of the proposed neural network is analyzed. Two illustrative examples are provided to show the feasibility and the efficiency of the proposed method in this paper

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    corecore