1,459 research outputs found

    Signature Verification Approach using Fusion of Hybrid Texture Features

    Full text link
    In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely Wavelet and Local Quantized Patterns (LQP) features, are employed to extract two kinds of transform and statistical based information from signature images. For each writer two separate one-class support vector machines (SVMs) corresponding to each set of LQP and Wavelet features are trained to obtain two different authenticity scores for a given signature. Finally, a score level classifier fusion method is used to integrate the scores obtained from the two one-class SVMs to achieve the verification score. In the proposed method only genuine signatures are used to train the one-class SVMs. The proposed signature verification method has been tested using four different publicly available datasets and the results demonstrate the generality of the proposed method. The proposed system outperforms other existing systems in the literature.Comment: Neural Computing and Applicatio

    Undecimated Wavelet Transform for Word Embedded Semantic Marginal Autoencoder in Security improvement and Denoising different Languages

    Full text link
    By combining the undecimated wavelet transform within a Word Embedded Semantic Marginal Autoencoder (WESMA), this research study provides a novel strategy for improving security measures and denoising multiple languages. The incorporation of these strategies is intended to address the issues of robustness, privacy, and multilingualism in data processing applications. The undecimated wavelet transform is used as a feature extraction tool to identify prominent language patterns and structural qualities in the input data. The proposed system may successfully capture significant information while preserving the temporal and geographical links within the data by employing this transform. This improves security measures by increasing the system's ability to detect abnormalities, discover hidden patterns, and distinguish between legitimate content and dangerous threats. The Word Embedded Semantic Marginal Autoencoder also functions as an intelligent framework for dimensionality and noise reduction. The autoencoder effectively learns the underlying semantics of the data and reduces noise components by exploiting word embeddings and semantic context. As a result, data quality and accuracy are increased in following processing stages. The suggested methodology is tested using a diversified dataset that includes several languages and security scenarios. The experimental results show that the proposed approach is effective in attaining security enhancement and denoising capabilities across multiple languages. The system is strong in dealing with linguistic variances, producing consistent outcomes regardless of the language used. Furthermore, incorporating the undecimated wavelet transform considerably improves the system's ability to efficiently address complex security concern

    Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction

    No full text
    Published versio

    Fingerprint Recognition in Biometric Security -A State of the Art

    Get PDF
    Today, because of the vulnerability of standard authentication system, law-breaking has accumulated within the past few years. Identity authentication that relies on biometric feature like face, iris, voice, hand pure mathematics, handwriting, retina, fingerprints will considerably decrease the fraud. so that they square measure being replaced by identity verification mechanisms. Among bioscience, fingerprint systems are one amongst most generally researched and used. it\'s fashionable due to their easy accessibility. during this paper we tend to discuss the elaborated study of various gift implementation define strategies together with their comparative measures and result analysis thus as realize a brand new constructive technique for fingerprint recognition

    Complex Data: Mining using Patterns

    Get PDF
    There is a growing need to analyse sets of complex data, i.e., data in which the individual data items are (semi-) structured collections of data themselves, such as sets of time-series. To perform such analysis, one has to redefine familiar notions such as similarity on such complex data types. One can do that either on the data items directly, or indi- rectly, based on features or patterns computed from the individual data items. In this paper, we argue that wavelet decomposition is a general tool for the latter approac
    • …
    corecore