2,346 research outputs found

    Efficient memory management in video on demand servers

    Get PDF
    In this article we present, analyse and evaluate a new memory management technique for video-on-demand servers. Our proposal, Memory Reservation Per Storage Device (MRPSD), relies on the allocation of a fixed, small number of memory buffers per storage device. Selecting adequate scheduling algorithms, information storage strategies and admission control mechanisms, we demonstrate that MRPSD is suited for the deterministic service of variable bit rate streams to intolerant clients. MRPSD allows large memory savings compared to traditional memory management techniques, based on the allocation of a certain amount of memory per client served, without a significant performance penaltyPublicad

    A study of QoS support for real time multimedia communication over IEEE802.11 WLAN : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Computer Systems Engineering, Massey University, Albany, New Zealand

    Get PDF
    Quality of Service (QoS) is becoming a key problem for Real Time (RT) traffic transmitted over Wireless Local Area Network (WLAN). In this project the recent proposals for enhanced QoS performance for RT multimedia is evaluated and analyzed. Two simulation models for EDCF and HCF protocols are explored using OPNET and NS-2 simulation packages respectively. From the results of the simulation, we have studied the limitations of the 802.1 le standard for RT multimedia communication and analysed the reasons of the limitations happened and proposed the solutions for improvement. Since RT multimedia communication encompasses time-sensitive traffic, the measure of quality of service generally is minimal delay (latency) and delay variation (jitter). 802.11 WLAN standard focuses on the PHY layer and the MAC layer. The transmitted data rate on PHY layer are increased on standards 802.1 lb, a, g, j, n by different code mapping technologies while 802.1 le is developed specially for the QoS performance of RT-traffics at the MAC layer. Enhancing the MAC layer protocols are the significant topic for guaranteeing the QoS performance of RT-traffics. The original MAC protocols of 802.11 are DCF (Distributed Coordination Function) and PCF (Point Coordinator Function). They cannot achieve the required QoS performance for the RT-traffic transmission. IEEE802.lle draft has developed EDCF and HCF instead. Simulation results of EDCF and HCF models that we explored by OPNET and NS-2, show that minimal latency and jitter can be achieved. However, the limitations of EDCF and HCF are identified from the simulation results. EDCF is not stable under the high network loading. The channel utilization is low by both protocols. Furthermore, the fairness index is very poor by the HCF. It means the low priority traffic should starve in the WLAN network. All these limitations are due to the priority mechanism of the protocols. We propose a future work to develop dynamic self-adaptive 802.11c protocol as practical research directions. Because of the uncertainly in the EDCF in the heavy loading, we can add some parameters to the traffic loading and channel condition efficiently. We provide indications for adding some parameters to increase the EDCF performance and channel utilization. Because all the limitations are due to the priority mechanism, the other direction is doing away with the priority rule for reasonable bandwidth allocation. We have established that the channel utilization can be increased and collision time can be reduced for RT-traffics over the EDCF protocol. These parameters can include loading rate, collision rate and total throughput saturation. Further simulation should look for optimum values for the parameters. Because of the huge polling-induced overheads, HCF has the unsatisfied tradeoff. This leads to poor fairness and poor throughput. By developing enhanced HCF it may be possible to enhance the RI polling interval and TXOP allocation mechanism to get better fairness index and channel utilization. From the simulation, we noticed that the traffics deployment could affect the total QoS performance, an indication to explore whether the classification of traffics deployments to different categories is a good idea. With different load-based traffic categories, QoS may be enhanced by appropriate bandwidth allocation Strategy

    WLC22-4: Efficient request mechanism usage in IEEE 802.16

    Get PDF
    IEEE 802.16 protocols for metropolitan broadband wireless access systems have been standardized recently. According to the standard, a subscriber station can deliver bandwidth request messages to a base station by numerous methods. This paper provides both the simulation and analytical models for the investigation of specified random access method, which is compared with centralized polling and station- grouping mechanisms. Based on the assumptions of Bernoulli request arrival process and ideal channel conditions, the mean delay of a request transmission is evaluated for varying number of transmission opportunities and different arrival rates

    A TLA+ Formal Specification and Verification of a New Real-Time Communication Protocol

    Get PDF
    AbstractWe describe the formal specification and verification of a new fault-tolerant real-time communication protocol, called DoRiS, which is designed for supporting distributed real-time systems that use a shared high-bandwidth medium. Since such a kind of protocol is reasonably complex and requires high levels of confidence on both timing and safety properties, formal methods are useful. Indeed, the design of DoRiS was strongly based on formal methods, where the TLA+ language and its associated model-checker TLC were the supporting design tool. The protocol conception was improved by using information provided by its formal specification and verification. In the end, a precise and highly reliable protocol description is provided

    Peak-to-Average-Power-Ratio (PAPR) Reduction Techniques for Orthogonal-Frequency-Division- Multiplexing (OFDM) Transmission

    Get PDF
    Wireless communication has experienced an incredible growth in the last decade. Two decades ago,the number of mobile subscribers was less than 1% of the world\u27s population. As of 2011, the number of mobile subscribers has increased tremendously to 79.86% of the world\u27s population. Robust and high-rate data transmission in mobile environments faces severe problems due to the time-variant channel conditions, multipath fading and shadow fading. Fading is the main limitation on wireless communication channels. Frequency selective interference and fading, such as multipath fading, is a bandwidth bottleneck in the last mile which runs from the access point to the user. The last mile problem in wireless communication networks is caused by the environment of free space channels through which the signal propagates. Orthogonal Frequency Division Multiplexing (OFDM) is a promising modulation and multiplexing technique due to its robustness against multipath fading. Nevertheless, OFDM suffers from high Peak-to-Average- Power-Ratio (PAPR), which results in a complex OFDM signal. In this research, reduction of PAPR considering the out-of-band radiation and the regeneration of the time-domain signal peaks caused by filtering has been studied and is presented. Our PAPR reduction was 30% of the Discrete Fourier Transform (DFT) with Interleaved Frequency Division Multiple Access (IFDMA) utilizing Quadrature Phase Shift Keying (QPSK) and varying the roll-off factor. We show that pulse shaping does not affect the PAPR of Localized Frequency Division Multiple Access (LFDMA) as much as it affects the PAPR of IFDMA. Therefore, IFDMA has an important trade-off relationship between excess bandwidth and PAPR performance, since excess bandwidth increases as the roll-off factor increases. In addition, we studied a low complexity clipping scheme, applicable to IFDMA uplink and OFDM downlink systems for PAPR reduction. We show that the performance of the PAPR of the Interleaved-FDMA scheme is better than traditional OFDMA for the uplink transmission system. Our reduction of PAPR is 53% when IFDMA is used instead of OFDMA in the uplink direction. Furthermore, we also examined an important trade-off relationship between clipping distortion and quantization noise when the clipping scheme is used for OFDM downlink systems. Our results show a significant reduction in the PAPR and the out-of-band radiation caused by clipping for OFDM downlink transmission system

    Combining distributed queuing with energy harvesting to enable perpetual distributed data collection applications

    Get PDF
    This is the peer reviewed version of the following article: Vazquez-Gallego F, Tuset-Peiró P, Alonso L, Alonso-Zarate J. Combining distributed queuing with energy harvesting to enable perpetual distributed data collection applications. Trans Emerging Tel Tech. 2017;e3195 , which has been published in final form at https://doi.org/10.1002/ett.3195. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This paper presents, models, and evaluates energy harvesting–aware distributed queuing (EH-DQ), a novel medium access control protocol that combines distributed queuing with energy harvesting (EH) to address data collection applications in industrial scenarios using long-range and low-power wireless communication technologies. We model the medium access control protocol operation using a Markov chain and evaluate its ability to successfully transmit data without depleting the energy stored at the end devices. In particular, we compare the performance and energy consumption of EH-DQ with that of time-division multiple access (TDMA), which provides an upper limit in data delivery, and EH-aware reservation dynamic frame slotted ALOHA, which is an improved variation of frame slotted ALOHA. To evaluate the performance of these protocols, we use 2 performance metrics: delivery ratio and time efficiency. Delivery ratio measures the ability to successfully transmit data without depleting the energy reserves, whereas time efficiency measures the amount of data that can be transmitted in a certain amount of time. Results show that EH-DQ and TDMA perform close to the optimum in data delivery and outperform EH-aware reservation dynamic frame slotted ALOHA in data delivery and time efficiency. Compared to TDMA, the time efficiency of EH-DQ is insensitive to the amount of harvested energy, making it more suitable for energy-constrained applications. Moreover, compared to TDMA, EH-DQ does not require updated network information to maintain a collision-free schedule, making it suitable for very dynamic networks.Peer ReviewedPostprint (author's final draft
    • 

    corecore