20 research outputs found

    A Dirac type result on Hamilton cycles in oriented graphs

    Full text link
    We show that for each \alpha>0 every sufficiently large oriented graph G with \delta^+(G),\delta^-(G)\ge 3|G|/8+ \alpha |G| contains a Hamilton cycle. This gives an approximate solution to a problem of Thomassen. In fact, we prove the stronger result that G is still Hamiltonian if \delta(G)+\delta^+(G)+\delta^-(G)\geq 3|G|/2 + \alpha |G|. Up to the term \alpha |G| this confirms a conjecture of H\"aggkvist. We also prove an Ore-type theorem for oriented graphs.Comment: Added an Ore-type resul

    Hamilton cycles in sparse robustly expanding digraphs

    Get PDF
    The notion of robust expansion has played a central role in the solution of several conjectures involving the packing of Hamilton cycles in graphs and directed graphs. These and other results usually rely on the fact that every robustly expanding (di)graph with suitably large minimum degree contains a Hamilton cycle. Previous proofs of this require Szemer\'edi's Regularity Lemma and so this fact can only be applied to dense, sufficiently large robust expanders. We give a proof that does not use the Regularity Lemma and, indeed, we can apply our result to suitable sparse robustly expanding digraphs.Comment: Accepted for publication in The Electronic Journal of Combinatoric

    Hamiltonian degree sequences in digraphs

    Get PDF
    We show that for each \eta>0 every digraph G of sufficiently large order n is Hamiltonian if its out- and indegree sequences d^+_1\le ... \le d^+_n and d^- _1 \le ... \le d^-_n satisfy (i) d^+_i \geq i+ \eta n or d^-_{n-i- \eta n} \geq n-i and (ii) d^-_i \geq i+ \eta n or d^+_{n-i- \eta n} \geq n-i for all i < n/2. This gives an approximate solution to a problem of Nash-Williams concerning a digraph analogue of Chv\'atal's theorem. In fact, we prove the stronger result that such digraphs G are pancyclic.Comment: 17 pages, 2 figures. Section added which includes a proof of a conjecture of Thomassen for large tournaments. To appear in JCT

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Hamilton decompositions of regular expanders: applications

    Get PDF
    In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following: (i) an undirected analogue of our result on robust outexpanders; (ii) best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree d for a large range of values for d. (iii) a similar result for digraphs of given minimum semidegree; (iv) an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs; (v) the observation that dense quasi-random graphs are robust outexpanders; (vi) a verification of the `very dense' case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs; (vii) a proof of a conjecture of Erdos on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.Comment: final version, to appear in J. Combinatorial Theory

    Counting Hamilton decompositions of oriented graphs

    Get PDF
    A Hamilton cycle in a directed graph G is a cycle that passes through every vertex of G⁠. A Hamilton decomposition of G is a partition of its edge set into disjoint Hamilton cycles. In the late 60s, Kelly conjectured that every regular tournament has a Hamilton decomposition. This conjecture was recently settled for large tournaments by Kühn and Osthus [13], who proved more generally that every r-regular n-vertex oriented graph G (without antiparallel edges) with r=cn for some fixed c&gt;3/8 has a Hamilton decomposition, provided n=n(c) is sufficiently large. In this article, we address the natural question of estimating the number of such decompositions of G and show that this number is n(1−o(1))cn^2⁠. In addition, we also obtain a new and much simpler proof for the approximate version of Kelly’s conjecture

    Hamilton decompositions of regular tournaments

    Full text link
    We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each \eta>0 every regular tournament G of sufficiently large order n contains at least (1/2-\eta)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments.Comment: 38 pages, 2 figures. Added section sketching how we can extend our main result. To appear in the Proceedings of the LM
    corecore