2 research outputs found

    Landsat D Thematic Mapper image dimensionality reduction and geometric correction accuracy

    Get PDF
    To characterize and quantify the performance of the Landsat thematic mapper (TM), techniques for dimensionality reduction by linear transformation have been studied and evaluated and the accuracy of the correction of geometric errors in TM images analyzed. Theoretical evaluations and comparisons for existing methods for the design of linear transformation for dimensionality reduction are presented. These methods include the discrete Karhunen Loeve (KL) expansion, Multiple Discriminant Analysis (MDA), Thematic Mapper (TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). A unified approach to these design problems is presented in which each method involves optimizing an objective function with respect to the linear transformation matrix. From these studies, four modified methods are proposed. They are referred to as the Space Variant Linear Transformation, the KL Transform-MDA hybrid method, and the First and Second Version of the Weighted MDA method. The modifications involve the assignment of weights to classes to achieve improvements in the class conditional probability of error for classes with high weights. Experimental evaluations of the existing and proposed methods have been performed using the six reflective bands of the TM data. It is shown that in terms of probability of classification error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data require only a three dimensional feature space. It is shown experimentally as well that for the proposed methods, the classes with high weights have improvements in class conditional probability of error estimates as expected

    Neuronale Netze mit erweiterten bayesschen Methoden für reale Datensammlungen

    Get PDF
    Zu zahlreichen Problemen, die bei der Verarbeitung von realen Trainingsdaten durch neuronale Netze auftreten können, und die bisher in der Literatur nicht oder nicht ausreichend diskutiert wurden, werden Lösungen präsentiert. Alle diese Verfahren werden in einem Gesamtsystem zur Verarbeitung von Korrosionsdaten implementiert und empirisch validiert. Ausgang aller Konzepte und Algorithmen bilden neuronale Netze mit erweiterten bayesschen Methoden: sie verarbeiten Trainingsdaten mit individuellen Messfehlerangaben. Entsprechend können zu den Prognosen auch Prognosefehler in Form von Konfidenzen berechnet werden. Für die Implementierung wurden generalisierte lineare Netze verwendet. Sie ermöglichen einen sehr effizienten Trainingsalgorithmus, der neben den Gewichten auch die a priori Verteilung der Gewichte vollautomatisch bestimmt. Weiter wird eine Reihe von theoretischen Aussagen präsentiert, die für das Verständnis der erweiterten bayesschen Methoden wichtig sind, und die das Verhältnis zwischen Trainings- und Prognosefehlern, den Basisfunktionen und der Gewichtsregularisierung beschreiben. Die Kooperation von Netzen wird eingeführt, um zwei strukturelle Probleme der vorliegenden Korrosionsdatensammlung effektiv zu lösen. Da sich die Messstellen einerseits in einem sehr hochdimensionalen Raum befinden, sie aber andererseits in vergleichsweise wenigen Clustern angeordnet sind, werden jeweils inhaltlich zusammengehörige Trainingsdaten zu einzelnen Experten zusammengefasst. Außerdem werden Trainingsdaten, die in einem Parameter fehlende, also verteilte Werte aufweisen, in anderen Experten trainiert als Trainingsdaten mit konkreten Werten. Darüber hinaus beschleunigt die Kooperation sowohl das Training als auch die Prognose und verringert den benötigten Speicherplatz. Die Beziehung zwischen einem einzelnen Netz, das auf allen Daten trainiert wurde, und zwei kooperierenden Netzen, die zusammen auf den gleichen Daten trainiert wurden, wird analytisch und beispielhaft untersucht. Die Kooperation generalisiert dabei näherungsweise genauso gut wie ein einzelnes, universelles Netz. Die Korrosion ist überwiegend, aber nicht überall eine deterministische Funktion der Eingangsgrößen. Das vorgestellte Modell des regionalen Rauschens ist, wenn entsprechende Trainingsdaten zur Verfügung stehen, in der Lage, diejenigen Regionen im Eingaberaum zu erkennen, in denen Trainingsdaten, gemessen an ihren Messfehlerangaben, zueinander in Widerspruch stehen. Die Standardabweichung des inhärenten Rauschens wird dabei erkannt und bildet zusammen mit dem bayesschen Prognosefehler einen erweiterten Fehlerbalken der Prognose. Das in der Literatur üblicherweise verwendete Klassifikationsmodell, das die Eingangsgrößen als Zufallsvariablen in Abhängigkeit der zu trainierenden Klasse annimmt, ist auf die Korrosion nicht anwendbar. Daher wird ein alternatives Modell entwickelt, welches diese Abhängigkeit umkehrt. Es ermöglicht darüber hinaus eine Trennung der trainierten und der prognostizierten Klassen, sodass die Information, die in den Trainingsdaten enthalten ist, besser genutzt werden kann. Die Verarbeitung von Daten, die nicht ursprünglich zum Training von neuronalen Netzen zusammengestellt wurden, erfordert eine umfangreiche Vorverarbeitung. Dazu werden Methoden eines zweistufigen Verfahrens beschrieben, dessen zentrales Element das komplexe, benutzer- und problemorientierte konzeptionelle Datenschema ist. Bei der Abbildung der ursprünglichen Trainingsdaten in dieses Schema werden Spezifika der Datenbeschreibung abgebaut und so eine phänomenorientierte Beschreibung geleistet. In die weitere Abbildung auf die Netzein- und -ausgänge fließt analytisches Problemwissen ein, was dann zu erheblich verbesserten Generalisierungseigenschaften führt. Ein Überblick über den Leistungsumfang der entstandenen Software und empirische Auswertungen, die die Leistungsfähigkeit und die Korrektheit aller beschriebenen Modelle und Konzepte belegen, schließen die Arbeit ab
    corecore