17 research outputs found

    Chore Cutting: Envy and Truth

    Full text link
    We study the fair division of divisible bad resources with strategic agents who can manipulate their private information to get a better allocation. Within certain constraints, we are particularly interested in whether truthful envy-free mechanisms exist over piecewise-constant valuations. We demonstrate that no deterministic truthful envy-free mechanism can exist in the connected-piece scenario, and the same impossibility result occurs for hungry agents. We also show that no deterministic, truthful dictatorship mechanism can satisfy the envy-free criterion, and the same result remains true for non-wasteful constraints rather than dictatorship. We further address several related problems and directions.Comment: arXiv admin note: text overlap with arXiv:2104.07387 by other author

    Redividing the Cake

    Full text link
    A heterogeneous resource, such as a land-estate, is already divided among several agents in an unfair way. It should be re-divided among the agents in a way that balances fairness with ownership rights. We present re-division protocols that attain various trade-off points between fairness and ownership rights, in various settings differing in the geometric constraints on the allotments: (a) no geometric constraints; (b) connectivity --- the cake is a one-dimensional interval and each piece must be a contiguous interval; (c) rectangularity --- the cake is a two-dimensional rectangle or rectilinear polygon and the pieces should be rectangles; (d) convexity --- the cake is a two-dimensional convex polygon and the pieces should be convex. Our re-division protocols have implications on another problem: the price-of-fairness --- the loss of social welfare caused by fairness requirements. Each protocol implies an upper bound on the price-of-fairness with the respective geometric constraints.Comment: Extended IJCAI 2018 version. Previous name: "How to Re-Divide a Cake Fairly

    Deterministic, Strategyproof, and Fair Cake Cutting

    Full text link
    We study the classic cake cutting problem from a mechanism design perspective, in particular focusing on deterministic mechanisms that are strategyproof and fair. We begin by looking at mechanisms that are non-wasteful and primarily show that for even the restricted class of piecewise constant valuations there exists no direct-revelation mechanism that is strategyproof and even approximately proportional. Subsequently, we remove the non-wasteful constraint and show another impossibility result stating that there is no strategyproof and approximately proportional direct-revelation mechanism that outputs contiguous allocations, again, for even the restricted class of piecewise constant valuations. In addition to the above results, we also present some negative results when considering an approximate notion of strategyproofness, show a connection between direct-revelation mechanisms and mechanisms in the Robertson-Webb model when agents have piecewise constant valuations, and finally also present a (minor) modification to the well-known Even-Paz algorithm that has better incentive-compatible properties for the cases when there are two or three agents.Comment: A shorter version of this paper will appear at IJCAI 201

    An Algorithmic Framework for Strategic Fair Division

    Full text link
    We study the paradigmatic fair division problem of allocating a divisible good among agents with heterogeneous preferences, commonly known as cake cutting. Classical cake cutting protocols are susceptible to manipulation. Do their strategic outcomes still guarantee fairness? To address this question we adopt a novel algorithmic approach, by designing a concrete computational framework for fair division---the class of Generalized Cut and Choose (GCC) protocols}---and reasoning about the game-theoretic properties of algorithms that operate in this model. The class of GCC protocols includes the most important discrete cake cutting protocols, and turns out to be compatible with the study of fair division among strategic agents. In particular, GCC protocols are guaranteed to have approximate subgame perfect Nash equilibria, or even exact equilibria if the protocol's tie-breaking rule is flexible. We further observe that the (approximate) equilibria of proportional GCC protocols---which guarantee each of the nn agents a 1/n1/n-fraction of the cake---must be (approximately) proportional. Finally, we design a protocol in this framework with the property that its Nash equilibrium allocations coincide with the set of (contiguous) envy-free allocations

    Communication Complexity of Cake Cutting

    Full text link
    We study classic cake-cutting problems, but in discrete models rather than using infinite-precision real values, specifically, focusing on their communication complexity. Using general discrete simulations of classical infinite-precision protocols (Robertson-Webb and moving-knife), we roughly partition the various fair-allocation problems into 3 classes: "easy" (constant number of rounds of logarithmic many bits), "medium" (poly-logarithmic total communication), and "hard". Our main technical result concerns two of the "medium" problems (perfect allocation for 2 players and equitable allocation for any number of players) which we prove are not in the "easy" class. Our main open problem is to separate the "hard" from the "medium" classes.Comment: Added efficient communication protocol for the monotone crossing proble

    Monotonicity and Competitive Equilibrium in Cake-cutting

    Full text link
    We study the monotonicity properties of solutions in the classic problem of fair cake-cutting --- dividing a heterogeneous resource among agents with different preferences. Resource- and population-monotonicity relate to scenarios where the cake, or the number of participants who divide the cake, changes. It is required that the utility of all participants change in the same direction: either all of them are better-off (if there is more to share or fewer to share among) or all are worse-off (if there is less to share or more to share among). We formally introduce these concepts to the cake-cutting problem and examine whether they are satisfied by various common division rules. We prove that the Nash-optimal rule, which maximizes the product of utilities, is resource-monotonic and population-monotonic, in addition to being Pareto-optimal, envy-free and satisfying a strong competitive-equilibrium condition. Moreover, we prove that it is the only rule among a natural family of welfare-maximizing rules that is both proportional and resource-monotonic.Comment: Revised versio
    corecore