1,027 research outputs found

    A Dichotomy Theorem for Homomorphism Polynomials

    Full text link
    In the present paper we show a dichotomy theorem for the complexity of polynomial evaluation. We associate to each graph H a polynomial that encodes all graphs of a fixed size homomorphic to H. We show that this family is computable by arithmetic circuits in constant depth if H has a loop or no edge and that it is hard otherwise (i.e., complete for VNP, the arithmetic class related to #P). We also demonstrate the hardness over the rational field of cut eliminator, a polynomial defined by B\"urgisser which is known to be neither VP nor VNP-complete in the field of two elements, if VP is not equal to VNP (VP is the class of polynomials computable by arithmetic circuit of polynomial size)

    Separations of Matroid Freeness Properties

    Full text link
    Properties of Boolean functions on the hypercube invariant with respect to linear transformations of the domain are among the most well-studied properties in the context of property testing. In this paper, we study the fundamental class of linear-invariant properties called matroid freeness properties. These properties have been conjectured to essentially coincide with all testable linear-invariant properties, and a recent sequence of works has established testability for increasingly larger subclasses. One question left open, however, is whether the infinitely many syntactically different properties recently shown testable in fact correspond to new, semantically distinct ones. This is a crucial issue since it has also been shown that there exist subclasses of these properties for which an infinite set of syntactically different representations collapse into one of a small, finite set of properties, all previously known to be testable. An important question is therefore to understand the semantics of matroid freeness properties, and in particular when two syntactically different properties are truly distinct. We shed light on this problem by developing a method for determining the relation between two matroid freeness properties P and Q. Furthermore, we show that there is a natural subclass of matroid freeness properties such that for any two properties P and Q from this subclass, a strong dichotomy must hold: either P is contained in Q or the two properties are "well separated." As an application of this method, we exhibit new, infinite hierarchies of testable matroid freeness properties such that at each level of the hierarchy, there are functions that are far from all functions lying in lower levels of the hierarchy. Our key technical tool is an apparently new notion of maps between linear matroids, called matroid homomorphisms, that might be of independent interest

    Graph hypersurfaces and a dichotomy in the Grothendieck ring

    Get PDF
    The subring of the Grothendieck ring of varieties generated by the graph hypersurfaces of quantum field theory maps to the monoid ring of stable birational equivalence classes of varieties. We show that the image of this map is the copy of Z generated by the class of a point. Thus, the span of the graph hypersurfaces in the Grothendieck ring is nearly killed by setting the Lefschetz motive L to zero, while it is known that graph hypersurfaces generate the Grothendieck ring over a localization of Z[L] in which L becomes invertible. In particular, this shows that the graph hypersurfaces do not generate the Grothendieck ring prior to localization. The same result yields some information on the mixed Hodge structures of graph hypersurfaces, in the form of a constraint on the terms in their Deligne-Hodge polynomials.Comment: 8 pages, LaTe

    On Tractable Exponential Sums

    Full text link
    We consider the problem of evaluating certain exponential sums. These sums take the form x1,...,xnZNef(x1,...,xn)2πi/N\sum_{x_1,...,x_n \in Z_N} e^{f(x_1,...,x_n) {2 \pi i / N}} , where each x_i is summed over a ring Z_N, and f(x_1,...,x_n) is a multivariate polynomial with integer coefficients. We show that the sum can be evaluated in polynomial time in n and log N when f is a quadratic polynomial. This is true even when the factorization of N is unknown. Previously, this was known for a prime modulus N. On the other hand, for very specific families of polynomials of degree \ge 3, we show the problem is #P-hard, even for any fixed prime or prime power modulus. This leads to a complexity dichotomy theorem - a complete classification of each problem to be either computable in polynomial time or #P-hard - for a class of exponential sums. These sums arise in the classifications of graph homomorphisms and some other counting CSP type problems, and these results lead to complexity dichotomy theorems. For the polynomial-time algorithm, Gauss sums form the basic building blocks. For the hardness results, we prove group-theoretic necessary conditions for tractability. These tests imply that the problem is #P-hard for even very restricted families of simple cubic polynomials over fixed modulus N

    Counting Answers to Existential Positive Queries: A Complexity Classification

    Full text link
    Existential positive formulas form a fragment of first-order logic that includes and is semantically equivalent to unions of conjunctive queries, one of the most important and well-studied classes of queries in database theory. We consider the complexity of counting the number of answers to existential positive formulas on finite structures and give a trichotomy theorem on query classes, in the setting of bounded arity. This theorem generalizes and unifies several known results on the complexity of conjunctive queries and unions of conjunctive queries.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0719

    Satisfiability in multi-valued circuits

    Full text link
    Satisfiability of Boolean circuits is among the most known and important problems in theoretical computer science. This problem is NP-complete in general but becomes polynomial time when restricted either to monotone gates or linear gates. We go outside Boolean realm and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From the complexity point of view this is strictly connected with the problems of solving equations (or systems of equations) over finite algebras. The research reported in this work was motivated by a desire to know for which finite algebras A\mathbf A there is a polynomial time algorithm that decides if an equation over A\mathbf A has a solution. We are also looking for polynomial time algorithms that decide if two circuits over a finite algebra compute the same function. Although we have not managed to solve these problems in the most general setting we have obtained such a characterization for a very broad class of algebras from congruence modular varieties. This class includes most known and well-studied algebras such as groups, rings, modules (and their generalizations like quasigroups, loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics including MV-algebras). This paper seems to be the first systematic study of the computational complexity of satisfiability of non-Boolean circuits and solving equations over finite algebras. The characterization results provided by the paper is given in terms of nice structural properties of algebras for which the problems are solvable in polynomial time.Comment: 50 page
    corecore