11,411 research outputs found

    Approximation for Maximum Surjective Constraint Satisfaction Problems

    Full text link
    Maximum surjective constraint satisfaction problems (Max-Sur-CSPs) are computational problems where we are given a set of variables denoting values from a finite domain B and a set of constraints on the variables. A solution to such a problem is a surjective mapping from the set of variables to B such that the number of satisfied constraints is maximized. We study the approximation performance that can be acccchieved by algorithms for these problems, mainly by investigating their relation with Max-CSPs (which are the corresponding problems without the surjectivity requirement). Our work gives a complexity dichotomy for Max-Sur-CSP(B) between PTAS and APX-complete, under the assumption that there is a complexity dichotomy for Max-CSP(B) between PO and APX-complete, which has already been proved on the Boolean domain and 3-element domains

    Algebraic Properties of Valued Constraint Satisfaction Problem

    Full text link
    The paper presents an algebraic framework for optimization problems expressible as Valued Constraint Satisfaction Problems. Our results generalize the algebraic framework for the decision version (CSPs) provided by Bulatov et al. [SICOMP 2005]. We introduce the notions of weighted algebras and varieties and use the Galois connection due to Cohen et al. [SICOMP 2013] to link VCSP languages to weighted algebras. We show that the difficulty of VCSP depends only on the weighted variety generated by the associated weighted algebra. Paralleling the results for CSPs we exhibit a reduction to cores and rigid cores which allows us to focus on idempotent weighted varieties. Further, we propose an analogue of the Algebraic CSP Dichotomy Conjecture; prove the hardness direction and verify that it agrees with known results for VCSPs on two-element sets [Cohen et al. 2006], finite-valued VCSPs [Thapper and Zivny 2013] and conservative VCSPs [Kolmogorov and Zivny 2013].Comment: arXiv admin note: text overlap with arXiv:1207.6692 by other author

    Polynomial-time Solvable #CSP Problems via Algebraic Models and Pfaffian Circuits

    Full text link
    A Pfaffian circuit is a tensor contraction network where the edges are labeled with changes of bases in such a way that a very specific set of combinatorial properties are satisfied. By modeling the permissible changes of bases as systems of polynomial equations, and then solving via computation, we are able to identify classes of 0/1 planar #CSP problems solvable in polynomial-time via the Pfaffian circuit evaluation theorem (a variant of L. Valiant's Holant Theorem). We present two different models of 0/1 variables, one that is possible under a homogeneous change of basis, and one that is possible under a heterogeneous change of basis only. We enumerate a series of 1,2,3, and 4-arity gates/cogates that represent constraints, and define a class of constraints that is possible under the assumption of a ``bridge" between two particular changes of bases. We discuss the issue of planarity of Pfaffian circuits, and demonstrate possible directions in algebraic computation for designing a Pfaffian tensor contraction network fragment that can simulate a swap gate/cogate. We conclude by developing the notion of a decomposable gate/cogate, and discuss the computational benefits of this definition

    Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem

    Get PDF
    The Algebraic Dichotomy Conjecture states that the Constraint Satisfaction Problem over a fixed template is solvable in polynomial time if the algebra of polymorphisms associated to the template lies in a Taylor variety, and is NP-complete otherwise. This paper provides two new characterizations of finitely generated Taylor varieties. The first characterization is using absorbing subalgebras and the second one cyclic terms. These new conditions allow us to reprove the conjecture of Bang-Jensen and Hell (proved by the authors) and the characterization of locally finite Taylor varieties using weak near-unanimity terms (proved by McKenzie and Mar\'oti) in an elementary and self-contained way

    Conservative constraint satisfaction re-revisited

    Full text link
    Conservative constraint satisfaction problems (CSPs) constitute an important particular case of the general CSP, in which the allowed values of each variable can be restricted in an arbitrary way. Problems of this type are well studied for graph homomorphisms. A dichotomy theorem characterizing conservative CSPs solvable in polynomial time and proving that the remaining ones are NP-complete was proved by Bulatov in 2003. Its proof, however, is quite long and technical. A shorter proof of this result based on the absorbing subuniverses technique was suggested by Barto in 2011. In this paper we give a short elementary prove of the dichotomy theorem for the conservative CSP

    Aggregation of Votes with Multiple Positions on Each Issue

    Full text link
    We consider the problem of aggregating votes cast by a society on a fixed set of issues, where each member of the society may vote for one of several positions on each issue, but the combination of votes on the various issues is restricted to a set of feasible voting patterns. We require the aggregation to be supportive, i.e. for every issue jj the corresponding component fjf_j of every aggregator on every issue should satisfy fj(x1,,,xn){x1,,,xn}f_j(x_1, ,\ldots, x_n) \in \{x_1, ,\ldots, x_n\}. We prove that, in such a set-up, non-dictatorial aggregation of votes in a society of some size is possible if and only if either non-dictatorial aggregation is possible in a society of only two members or a ternary aggregator exists that either on every issue jj is a majority operation, i.e. the corresponding component satisfies fj(x,x,y)=fj(x,y,x)=fj(y,x,x)=x,x,yf_j(x,x,y) = f_j(x,y,x) = f_j(y,x,x) =x, \forall x,y, or on every issue is a minority operation, i.e. the corresponding component satisfies fj(x,x,y)=fj(x,y,x)=fj(y,x,x)=y,x,y.f_j(x,x,y) = f_j(x,y,x) = f_j(y,x,x) =y, \forall x,y. We then introduce a notion of uniformly non-dictatorial aggregator, which is defined to be an aggregator that on every issue, and when restricted to an arbitrary two-element subset of the votes for that issue, differs from all projection functions. We first give a characterization of sets of feasible voting patterns that admit a uniformly non-dictatorial aggregator. Then making use of Bulatov's dichotomy theorem for conservative constraint satisfaction problems, we connect social choice theory with combinatorial complexity by proving that if a set of feasible voting patterns XX has a uniformly non-dictatorial aggregator of some arity then the multi-sorted conservative constraint satisfaction problem on XX, in the sense introduced by Bulatov and Jeavons, with each issue representing a sort, is tractable; otherwise it is NP-complete
    corecore