Conservative constraint satisfaction problems (CSPs) constitute an important
particular case of the general CSP, in which the allowed values of each
variable can be restricted in an arbitrary way. Problems of this type are well
studied for graph homomorphisms. A dichotomy theorem characterizing
conservative CSPs solvable in polynomial time and proving that the remaining
ones are NP-complete was proved by Bulatov in 2003. Its proof, however, is
quite long and technical. A shorter proof of this result based on the absorbing
subuniverses technique was suggested by Barto in 2011. In this paper we give a
short elementary prove of the dichotomy theorem for the conservative CSP