1,465 research outputs found

    3D Visual Perception for Self-Driving Cars using a Multi-Camera System: Calibration, Mapping, Localization, and Obstacle Detection

    Full text link
    Cameras are a crucial exteroceptive sensor for self-driving cars as they are low-cost and small, provide appearance information about the environment, and work in various weather conditions. They can be used for multiple purposes such as visual navigation and obstacle detection. We can use a surround multi-camera system to cover the full 360-degree field-of-view around the car. In this way, we avoid blind spots which can otherwise lead to accidents. To minimize the number of cameras needed for surround perception, we utilize fisheye cameras. Consequently, standard vision pipelines for 3D mapping, visual localization, obstacle detection, etc. need to be adapted to take full advantage of the availability of multiple cameras rather than treat each camera individually. In addition, processing of fisheye images has to be supported. In this paper, we describe the camera calibration and subsequent processing pipeline for multi-fisheye-camera systems developed as part of the V-Charge project. This project seeks to enable automated valet parking for self-driving cars. Our pipeline is able to precisely calibrate multi-camera systems, build sparse 3D maps for visual navigation, visually localize the car with respect to these maps, generate accurate dense maps, as well as detect obstacles based on real-time depth map extraction

    Navigational Drift Analysis for Visual Odometry

    Get PDF
    Visual odometry estimates a robot's ego-motion with cameras installed on itself. With the advantages brought by camera being a sensor, visual odometry has been widely adopted in robotics and navigation fields. Drift (or error accumulation) from relative motion concatenation is an intrinsic problem of visual odometry in long-range navigation, as visual odometry is a sensor based on relative measurements. General error analysis using ``mean'' and ``covariance'' of positional error in each axis is not fully capable to describe the behavior of drift. Moreover, no theoretic drift analysis is available for performance evaluation and algorithms comparison. Drift distribution is established in the paper, as a function of the covariance matrix from positional error propagation model. To validate the drift model, experiment with a specific setting is conducted

    Robust Visual SLAM in Challenging Environments with Low-texture and Dynamic Illumination

    Get PDF
    - Robustness to Dynamic Illumination conditions is also one of the main open challenges in visual odometry and SLAM, e.g. high dynamic range (HDR) environments. The main difficulties in these situations come from both the limitations of the sensors, for instance automatic settings of a camera might not react fast enough to properly record dynamic illumination changes, and also from limitations in the algorithms, e.g. the track of interest points is typically based on brightness constancy. The work of this thesis contributes to mitigate these phenomena from two different perspectives. The first one addresses this problem from a deep learning perspective by enhancing images to invariant and richer representations for VO and SLAM, benefiting from the generalization properties of deep neural networks. In this work it is also demonstrated how the insertion of long short term memory (LSTM) allows us to obtain temporally consistent sequences, since the estimation depends on previous states. Secondly, a more traditional perspective is exploited to contribute with a purely geometric-based tracking of line segments in challenging stereo streams with complex or varying illumination, since they are intrinsically more informative. Fecha de lectura de Tesis Doctoral: 26 de febrero 2020In the last years, visual Simultaneous Localization and Mapping (SLAM) has played a role of capital importance in rapid technological advances, e.g. mo- bile robotics and applications such as virtual, augmented, or mixed reality (VR/AR/MR), as a vital part of their processing pipelines. As its name indicates, it comprises the estimation of the state of a robot (typically the pose) while, simultaneously, incrementally building and refining a consistent representation of the environment, i.e. the so-called map, based on the equipped sensors. Despite the maturity reached by state-of-art visual SLAM techniques in controlled environments, there are still many open challenges to address be- fore reaching a SLAM system robust to long-term operations in uncontrolled scenarios, where classical assumptions, such as static environments, do not hold anymore. This thesis contributes to improve robustness of visual SLAM in harsh or difficult environments, in particular: - Low-textured Environments, where traditional approaches suffer from an accuracy impoverishment and, occasionally, the absolute failure of the system. Fortunately, many of such low-textured environments contain planar elements that are rich in linear shapes, so an alternative feature choice such as line segments would exploit information from structured parts of the scene. This set of contributions exploits both type of features, i.e. points and line segments, to produce visual odometry and SLAM algorithms robust in a broader variety of environments, hence leveraging them at all instances of the related processes: monocular depth estimation, visual odometry, keyframe selection, bundle adjustment, loop closing, etc. Additionally, an open-source C++ implementation of the proposed algorithms has been released along with the published articles and some extra multimedia material for the benefit of the community

    Stereo Visual Odometry with Deep Learning-Based Point and Line Feature Matching using an Attention Graph Neural Network

    Full text link
    Robust feature matching forms the backbone for most Visual Simultaneous Localization and Mapping (vSLAM), visual odometry, 3D reconstruction, and Structure from Motion (SfM) algorithms. However, recovering feature matches from texture-poor scenes is a major challenge and still remains an open area of research. In this paper, we present a Stereo Visual Odometry (StereoVO) technique based on point and line features which uses a novel feature-matching mechanism based on an Attention Graph Neural Network that is designed to perform well even under adverse weather conditions such as fog, haze, rain, and snow, and dynamic lighting conditions such as nighttime illumination and glare scenarios. We perform experiments on multiple real and synthetic datasets to validate the ability of our method to perform StereoVO under low visibility weather and lighting conditions through robust point and line matches. The results demonstrate that our method achieves more line feature matches than state-of-the-art line matching algorithms, which when complemented with point feature matches perform consistently well in adverse weather and dynamic lighting conditions
    • …
    corecore