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Abstract

In the last years, visual Simultaneous Localization and Mapping (SLAM) has
played a role of capital importance in rapid technological advances, e.g. mo-
bile robotics and applications such as virtual, augmented, or mixed reality
(VR/AR/MR), as a vital part of their processing pipelines. As its name indi-
cates, it comprises the estimation of the state of a robot (typically the pose)
while, simultaneously, incrementally building and refining a consistent repre-
sentation of the environment, i.e. the so-called map, based on the equipped
sensors.

Despite the maturity reached by state-of-art visual SLAM techniques in
controlled environments, there are still many open challenges to address be-
fore reaching a SLAM system robust to long-term operations in uncontrolled
scenarios, where classical assumptions, such as static environments, do not
hold anymore. This thesis contributes to improve robustness of visual SLAM
in harsh or difficult environments, in particular:

Low-textured Environments, where traditional approaches suffer from
an accuracy impoverishment and, occasionally, the absolute failure of the
system. Fortunately, many of such low-textured environments contain planar
elements that are rich in linear shapes, so an alternative feature choice such
as line segments would exploit information from structured parts of the scene.
This set of contributions exploits both type of features, i.e. points and line
segments, to produce visual odometry and SLAM algorithms robust in a
broader variety of environments, hence leveraging them at all instances of
the related processes: monocular depth estimation, visual odometry, keyframe
selection, bundle adjustment, loop closing, etc. Additionally, an open-source
C++ implementation of the proposed algorithms has been released along with
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the published articles and some extra multimedia material for the benefit of
the community.

Robustness to Dynamic Illumination conditions is also one of the main
open challenges in visual odometry and SLAM, e.g. high dynamic range
(HDR) environments. The main difficulties in these situations come from
both the limitations of the sensors, for instance automatic settings of a camera
might not react fast enough to properly record dynamic illumination changes,
and also from limitations in the algorithms, e.g. the track of interest points is
typically based on brightness constancy. The work of this thesis contributes
to mitigate these phenomena from two different perspectives. The first one
addresses this problem from a deep learning perspective by enhancing images
to invariant and richer representations for VO and SLAM, benefiting from
the generalization properties of deep neural networks. In this work it is also
demonstrated how the insertion of long short term memory (LSTM) allows
us to obtain temporally consistent sequences, since the estimation depends
on previous states. Secondly, a more traditional perspective is exploited to
contribute with a purely geometric-based tracking of line segments in chal-
lenging stereo streams with complex or varying illumination, since they are
intrinsically more informative.
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Resumen

Introducción
Imagine por un momento que la gente pudiera llevar dispositivos de realidad
virtual (del inglés VR) que le permitieran unirse a un mundo con posibilidades
ilimitadas, donde por ejemplo un ingeniero pudiera tener retroalimentación
visual del modelo que se está diseñando, un cirujano pudiera ensayar sus sigu-
ientes cirugías con un modelo 3D realista del paciente, o una persona pudiera
simplemente caminar por una ciudad y presenciar la recreación de algunos
momentos históricos de la ciudad. Sin ir más lejos, imagínese que un coche
autónomo podría llevarle al trabajo y recoger sus víveres momentos antes de
volver a casa, o que los vehículos autónomos no tripulados (del inglés UAV)
desempeñarían un papel vital en la asistencia en caso de catástrofe, o que los
robots inteligentes de telepresencia podrían ayudar a las personas mayores en
sus tareas cotidianas.

No hace tanto tiempo estas concepciones eran consideradas como ideas
poco realistas o futuristas, únicamente dignas de historias de ciencia ficción
como en la Figura 1 pero, de hecho, una mayoría de éstas son una realidad hoy
en día, o al menos no sería atrevido asumir que lo serán en los próximos años.
De hecho, existen algunas empresas de VR, como Oculus VR [5], que permiten
a la gente sumergirse en películas en 3D y videojuegos, o caminar e interactuar
por reconstrucciones virtuales de ciudades como Google Earth [2]. Así mismo,
hay un número de compañías, como Waymo [8] (anteriormente conocido como
el proyecto de conducción autónoma Google, Tesla [7] or Nuro [4], presen-
tando sus diferentes implementaciones de autos proyectos que actualmente
están siendo probados probando en ciudades como San Francisco.
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Figure 1: Hoy en día no es atrevido imaginar un futuro en el que se pueda lle-
var algún equipo de realidad virtual transportándote a un mundo con aplicaciones
ilimitadas. Fotografía extraída de la película Ready Player One (2018), basada en la
novela del mismo nombre de Ernest Cline.

Una tendencia diferente, de empresas como Fotokite [1], proporciona a
los UAVs un tiempo de vuelo casi ilimitado con una novedosa tecnología de
anclaje, que combinada con el uso de imágenes térmicas permite asistir a los
trabajadores en las tareas de bomberos y rescate. Además, muchas familias
tienen acceso a robots de aspiradoras autónomas, como la Dyson 360 Eye [6],
que puede ser fácilmente lanzada desde una aplicación en su teléfono, o a robots
móviles de asistencia que apoyan a las personas mayores con estimulación
cognitiva y social, asistencia y monitoreo transparente [101].

A pesar de las evidentes diferencias entre muchas de las aplicaciones men-
cionadas, todas ellas tienen en común la necesidad de conocer el entorno de
aplicación y, lo que es más importante, todas ellas necesitan conocer con pre-
cisión su localización relativa en dicho escenario. Estos dos problemas, que en
principio parecen desacoplados, han sido tradicionalmente abordados de forma
simultánea en un conjunto de técnicas conocidas como Localización y Mapeo
Simultáneo (de sus siglas en inglés SLAM ) que ha sido formulado y resuelto
en innumerables formas para diferentes aplicaciones.

Motivación
En los últimos años, el SLAM ha jugado un papel de capital importancia en
los rápidos avances tecnológicos en VR/AR/MR (AR y MR son las siglas de
realidad aumentada y mixta respectivamente) y robótica, como parte vital
de sus algoritmos de procesamiento, además de como base para el desarrollo
en paralelo de técnicas más avanzadas como la evitación de obstáculos, el
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reconocimiento de objetos, la planificación de tareas, el mapeo semántico, y
un largo etcétera. Como su nombre indica, el SLAM comprende la estimación
del estado de un robot mientras, simultáneamente, se realiza la construcción
incremental y refinamiento de una representación consistente del entorno, o
como se le conoce, el llamado mapa, basado en los sensores equipados. El
estado del robot se describe normalmente por su pose, que está formada por
la posición y orientación ya sea en 2D o 3D, aunque también puede contener
diferentes aspectos en función de la aplicación, como la velocidad y aceleración
del robot o parámetros de los sensores como las calibraciones o los errores
sistemáticos de los mismos.

Por otra parte, el mapa abarca algunos aspectos de interés que representan
el entorno operado por el robot y, por lo tanto, depende en gran medida de los
sensores seleccionados. En consecuencia, existe una amplia variedad de repre-
sentaciones observables del entorno, tanto en lo que se refiere a la aplicación
como a la selección del sensor. Por ejemplo, un mapa de ocupación puede de-
scribir el entorno en una aplicacion de vigilancia o para un robot de limpieza
equipado con un sensor láser, mientras que un mapa de características tridi-
mensionales extraídas de una cámara montada en un dron puede utilizarse en
tareas de rescate o asistencia en incendios. Al mismo tiempo, la información
del mapa se emplea en la estimación del estado del robot, reduciendo así la
deriva de la localización a lo largo del tiempo que los enfoques más sencillos,
como la odometría o la localización con baliza, cometen rápidamente gracias a
la ventaja de volver a visitar y reconocer áreas previamente mapeadas, en lo
que se conoce como cierre de bucle.

Hoy en día, las técnicas de SLAM visual, es decir, las que emplean algún
tipo de cámara, han alcanzado una gran madurez con resultados impresion-
antes en entornos controlados. De hecho, desde un punto de vista teórico y
conceptual, la comunidad científica ha considerado el SLAM como un prob-
lema resuelto desde la última década y, sin embargo, hoy en día es uno de los
temas de investigación más activos en visión por computador y robótica y su
popularidad no para de crecer. Por supuesto, una de las razones es el enorme
abismo entre la perspectiva teórica y el problema real con los datos procedentes
de los sensores reales y los inconvenientes del mundo real no previstos de an-
temano en los algoritmos de control de los sistemas. Considerado esto, queda
un largo antes de lograr una solución SLAM robusta para situaciones reales,
tales como entornos dinámicos, poco texturados o con iluminaciones dinámicas
o complejas, cambios en apariencia en aplicaciones persistentes, escalabilidad
de los datos procesados, o incluso un entendimiento de más alto nivel, por
ejemplo semántico, del entorno.

Contribuciones
Esta Tesis Doctoral contribuye a superar algunas de las limitaciones antes men-
cionadas de las técnicas tradicionales de SLAM visual y/o odometría, abor-
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dando el problema desde diferentes perspectivas. Concretamente, esta tesis
pretende avanzar a través de un sistema SLAM visual robusto que mitigue la
limitación de las técnicas actuales, es decir, la robustez a diferentes tipos de
entornos, iluminaciones complejas, etc. En este contexto, el alcance de esta
Tesis Doctoral comprende por un lado el diseño e implementación de nuevos
algoritmos de percepción y navegación que proporcionen una localización pre-
cisa y algún tipo de representación del entorno y, por otro, la integración de
estos enfoques junto con tecnologías en aplicaciones del mundo real, como la
robótica móvil.

De esta manera, los principales aportes de esta Tesis Doctoral se pueden
agrupar en dos grandes temas que se describen a continuación:

Contribuciones al SLAM en entornos pocos texturados.
El primer conjunto de trabajos, presentados en [61, 62, 65, 123], se centra en
mejorar la robustez de la odometría visual y las técnicas SLAM en entornos con
poca textura donde es habitual que el rendimiento de los enfoques tradicionales
disminuya debido a las dificultades para encontrar un número suficiente de
puntos fiables. El efecto, en estos casos, es un empobrecimiento de la precisión
y, ocasionalmente, el fallo total del sistema. Por el contrario, muchos de estos
entornos de baja textura contienen elementos planares que son ricos en formas
lineales, por lo que una opción de característica alternativa como segmentos
explotaría la información de partes estructuradas de la escena.

En este contexto, primero se ha contribuido con [62] un sistema completo
de odometría estéreo probabilística que, gracias a la combinación de puntos y
segmentos, fuera capaz de trabajar de forma robusta en entornos tan difíciles.
Desafortunadamente, el tratamiento de los segmentos en las imágenes no es
tan sencillo como en el caso de los puntos característicos, ya que son difíciles
de representar a la vez que requieren una mayor carga computacional para su
detección y seguimiento, lo que aumenta la complejidad del problema. Además,
la contribución presentada en [123] empleó este sistema de odometría estéreo
para desarrollar y probar un modelo robusto probabilístico para los errores de
proyección de características puntuales basadas en datos reales mediante su
modelado con distribuciones Gamma que mejoró tanto la precisión como la
exactitud del sistema.

Para rebajar estas dificultades adicionales, en [61] se extendió un pop-
ular enfoque semi-directo a la odometría visual monocular, conocida como
SVO [53], para explotar también la información de los segmentos, obteniendo
así un sistema más robusto capaz de tratar tanto con entornos texturizados
como con entornos estructurados. Como consecuencia directa, el sistema prop-
uesto permitía un seguimiento más rápido de las características, ya que di-
cho enfoque eliminaba la necesidad de extraer y emparejar continuamente las
características entre las diferentes imágenes de las secuencias.
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Finalmente, esta Tesis Doctoral también contribuye con PL-SLAM [65],
un sistema de SLAM visual para cámaras estéreo en tiempo real, que combina
tanto puntos como segmentos para trabajar de forma robusta en una mayor
variedad de escenarios. En esta contribución, la importancia de ambos tipos
de características se aprovecha en todas las instancias del proceso: odometría
visual, selección de keyframes, ajuste de haces, etc. Además, contribuye con
un procedimiento de cierre de bucle a través de un novedoso enfoque de "bolsa
de palabras" que explota el poder descriptivo combinado de los dos tipos de
características. Además, el mapa resultante es más rico y diverso en elementos
3D, que pueden ser explotados para inferir valiosas estructuras de escena de
alto nivel como planos, espacios vacíos, el plano del suelo, etc.

Los algoritmos desarrollados se han comparado con otras soluciones del
estado del arte en conjuntos de datos y referencias conocidas y disponibles
públicamente. Además, se publicó una implementación en C++ de código
abierto de los algoritmos propuestos junto con los artículos publicados y ma-
terial multimedia adicional para el beneficio de la comunidad científica.

Contribuciones al SLAM en entornos con iluminaciones
dinámicas o complejas.
En este segundo grupo de contribuciones, presentadas en [63, 66], se abordó
uno de los principales retos abiertos en odometría visual y SLAM, es decir, su
robustez frente a condiciones de iluminación difíciles o entornos de alto rango
dinámico (HDR). Las principales dificultades en estas situaciones provienen
tanto de las limitaciones de los sensores como de la incapacidad de realizar un
seguimiento exitoso de los puntos de interés debido a las suposiciones audaces
en SLAM, tales como constancia de luminosidad. El trabajo de esta Tesis
Doctoral contribuye a este fenómeno desde dos perspectivas diferentes.

La primera contribución, presentada en [66], aborda este problema desde
una perspectiva de aprendizaje profundo mediante la mejora de las imágenes
monoculares, convirtiéndolas a representaciones más informativas e invariantes
para VO y SLAM, aprovechando así las propiedades de generalización de las
redes neuronales para lograr un rendimiento robusto en condiciones variadas.
Este trabajo también demuestra cómo la inserción de capas de memoria de
largo plazo (LSTM) nos permite obtener secuencias temporalmente consis-
tentes, ya que la estimación depende de los estados previos. Las afirmaciones
se validaron comparando el rendimiento de dos algoritmos del estado del arte
en odometría/SLAM monocular (ORB-SLAM [115] y DSO [49]) comparando
su rendimiento con la secuencia original y la mejorada, mostrando los benefi-
cios de este enfoque en entornos difíciles.

En segundo lugar, una perspectiva más tradicional fue explotada en [63]
donde un enfoque puramente geométrico para el seguimiento robusto de seg-
mentos en secuencias estéreo complejas con cambios de iluminación severos o
entornos de Alto Rango Dinámico (HDR). Esta contribución demuestra que,
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gracias al hecho de que son más informativos, los segmentos pueden ser local-
izados con éxito a lo largo de las secuencias de vídeo considerando únicamente
su consistencia geométrica a lo largo de imágenes continuas, y lo validaba eval-
uando tanto el rendimiento como la estimación de movimiento en secuencias
de vídeo complejas a partir de conjuntos de datos de referencia en el estado
del arte.

Publicaciones
La presente tesis recoge las siguientes publicaciones, junto a material multi-
media en muchos casos, en:
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Vídeo: https://youtu.be/-lCTf_tAxhQ
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Conferencias Internacionales
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Marco de la tesis
Esta tesis es el resultado de 5 años de trabajo del autor como miembro del
grupo de investigación de Machine Perception and Intelligent Robotics (MAPIR)
del Departamento de Ingeniería de Sistemas y Automática de la Universidad de
Málaga. Esta investigación ha sido financiada principalmente por el programa
de becas FPI (Formación de Personal Investigador), apoyado por el Ministerio
de Economía y Competitividad de España.

Durante este período, el autor completó el programa de doctorado en In-
geniería Mecatrónica en el Departamento de Ingeniería de Sistemas y Auto-
mática, donde obtuvo un sólido conocimiento en cuatro de los pilares funda-
mentales de la robótica: sistemas de control, sistemas electrónicos, sistemas
mecánicos y computadores. El programa de doctorado también se completó
con varios cursos técnicos, como "Escritura Científica" en la Universidad de
Málaga, y con la participación en la "Escuela Internacional de Verano en Visión
por Computador", celebrada en Sicilia en 2016, que tenía como objetivo pro-
porcionar una gran oportunidad para interactuar a jóvenes investigadores y
estudiantes de doctorado, además de una interacción directa y debates con
líderes mundiales en el campo de la Visión por Computador.

Desde Octubre de 2016 hasta Febrero de 2017 el autor realizó una es-
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Estructura de la Tesis
Además de este resumen en Castellano, el resto de la tesis está estructurada
en los siguientes capítulos:

Chapter 1: Introduction resume los principales aspectos y contribu-
ciones de la presente Tesis Doctoral.

Chapter 2: Simultaneous Localization and Mapping revisa el es-
tado del arte de este importante problema y describe brevemente las
técnicas más extendidas basadas en características, métodos directos y
métodos semi-directos, situando este trabajo en el contexto del SLAM
visual.

Chapter 3: Robustness to Low-textured Environments describe
las dificultades que sufren la mayoría de las soluciones tradicionales en
entornos poco texturados, en los que su precisión suele deteriorarse.
Este capítulo también presenta tres contribuciones de la presente Tesis
Doctoral, las dos primeras son enfoques puramente odométricos, en el
contexto de SLAM en entornos con poca textura, todas ellas presen-
tadas a lo largo de bibliotecas C++ disponibles públicamente.

Chapter 4: Dealing with Dynamic Illumination and HDR Envi-
ronments trata uno de los principales desafíos abiertos en el SLAM
visual, cambios bruscos de iluminación,donde las dificultades provienen
tanto de las limitaciones de los sensores como de las suposiciones au-
daces que a menudo se introducen en los algoritmos para aliviar los
requisitos computacionales. En este Capítulo se presentan dos con-
tribuciones diferentes en este tema, una desde una perspectiva de deep-
learning, y otra desde un punto de vista geométrico para permitir el
seguimiento de las características en tales condiciones.

Chapter 5: Dataset for Low-textured, Dynamic Illumination and
HDR Environments propone un dataset visual e inercial que con-
tiene situaciones desafiantes, centrándose en entornos con poca textura
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o iluminaciones difíciles y dinámicas. El objetivo de este conjunto de
datos es proporcionar un punto de referencia para la evaluación de los al-
goritmos de odometría visual-inercial en estas situaciones, permitiendo
evaluar la deriva acumulada estimada de la trayectoria con el fin de
medir y comparar fácilmente los resultados de diferentes algoritmos.

Chapter 6: Conclusions ofrece algunas ideas finales extraídas del tra-
bajo realizado en esta Tesis Doctoral y presenta brevemente las futuras
líneas de investigación aún abiertas en relación con las contribuciones
de este trabajo.

Conclusiones y líneas futuras
En los últimos 20 años, las técnicas de SLAM visual han alcanzado una alta
madurez con resultados impresionantes en entornos y ambientes controlados.
De hecho, el SLAM ha sido considerado un problema teóricamente resuelto
durante la última década, tal y como afirmaron Durrant-Whyte y Bailey en
2006 [43] (traducido del inglés): A nivel teórico y conceptual, el SLAM puede
considerarse un problema resuelto. Sin embargo, sigue habiendo problemas sus-
tanciales en la implementación práctica de soluciones SLAM más generales y,
en particular, en la construcción y el uso de mapas ricos en percepciones como
parte de un algoritmo SLAM.

Hoy, más de una década después, sigue siendo uno de los temas de inves-
tigación más activos en visión por computador y robótica móvil, y la cuestión
de está el problema de SLAM resuelto? se plantea a menudo en la comunidad
científica [24]. Una de las razones detrás de ello es que, a pesar de la gran
madurez alcanzada por las técnicas visuales SLAM de última generación, to-
davía quedan muchos retos por resolver antes de llegar a un sistema SLAM
robusto para operaciones a largo plazo en escenarios no controlados, donde las
suposiciones clásicas, como los entornos estáticos, no se mantienen.

Esta tesis contribuye a superar algunas de las limitaciones antes men-
cionadas de las técnicas tradicionales de SLAM visual y/o odometría, abor-
dando el problema desde diferentes perspectivas. Específicamente, este trabajo
tiene como objetivo avanzar hacia un sistema visual SLAM robusto que mitigue
la limitación de las técnicas actuales, es decir, la robustez a diferentes tipos de
entornos, las iluminaciones desafiantes, etc. En este contexto, el alcance de esta
Tesis Doctoral comprende, por un lado, el diseño e implementación de nuevos
algoritmos de percepción y navegación que proporcionen una localización pre-
cisa y algún tipo de representación del entorno y, por otro, la integración de
estos enfoques junto con tecnologías en aplicaciones del mundo real, como la
robótica móvil. Las conclusiones principales de esta Tesis Doctoral se pueden
agrupar en dos grandes temas que se describen a continuación:
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SLAM en entornos pocos texturados. La primera serie de trabajos se ha cen-
trado en la mejora de la robustez de la odometría visual y las técnicas SLAM
en entornos de baja textura, donde es habitual que el rendimiento de los en-
foques tradicionales disminuya debido a las dificultades para encontrar un
número suficiente de características de punto fiables. En tales casos, el efecto
es un empobrecimiento en la precisión y, ocasionalmente, el fallo total del sis-
tema. Este grupo de trabajos se beneficia de una elección de características
alternativas, es decir, líneas o segmentos, para explotar la información de las
partes más estructuradas del entorno.
Para ello, esta Tesis Doctoral contribuye con un sistema SLAM en tiempo real
para cámaras estéreo que aprovecha la importancia de ambos tipos de carac-
terísticas que se aprovechan en todas las instancias del proceso: odometría
visual, selección de keyframes, ajuste de haces, etc. Además, contribuye con
un procedimiento de cierre de bucle mediante un novedoso enfoque de bolsa
de palabras que explota el poder descriptivo combinado de los dos tipos de
características. Entre los beneficios, el sistema resultante es más robusto en
entornos difíciles y, además, los mapas estimados son más ricos y diversos en
elementos 3D, que pueden ser explotados para inferir estructuras valiosas de
alto nivel como planos, espacios vacíos, suelo, etc.
Por otro lado, el tratamiento de las características de los segmentos en las
imágenes no es tan sencillo como en el caso de los puntos, ya que son difíciles
de representar y, al mismo tiempo, requieren una mayor carga computacional
para su seguimiento. Para aliviar estas dificultades adicionales, esta Tesis
también se ha beneficiado del enfoque semi-directo de la odometría monocular
para extender un trabajo previo del estado del arte, conocido como SVO
[53], con el fin de trabajar simultáneamente con segmentos. Esto permitió un
seguimiento más rápido de las características, ya que el planteamiento semi-
directo eliminó la necesidad de una continua detección y seguimiento de las
características.
Los algoritmos desarrollados han sido comparados con otras soluciones de
vanguardia en conjuntos de datos extendidos y conocidos por la comunidad,
y adicionalmente se ha publicado una implementación C++ de código abierto
de los algoritmos propuestos, junto con los artículos publicados además de
material multimedia adicional para el beneficio de la comunidad.

SLAM en entornos con iluminaciones dinámicas o complejas.
Uno de los principales retos abiertos en la odometría visual y SLAM es su ro-
bustez frente a condiciones de iluminación difíciles o entornos HDR. En tales
casos, las dificultades provienen tanto de las limitaciones de los sensores, como
de los cambios rápidos de áreas oscuras a áreas brillantes que pueden sobreex-
poner las imágenes, y de la incapacidad de realizar un seguimiento exitoso de
los puntos de interés debido a las tradicionales hipótesis realizadas en SLAM,
como la constancia local del brillo en las imágenes procesadas. El trabajo
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de esta Tesis Doctoral contribuye a este fenómeno desde dos perspectivas
diferentes.
En la primera, se ha abordado este problema desde una perspectiva de apren-
dizaje profundo (deep-learning) mediante la mejora de las imágenes monoc-
ulares a representaciones más informativas e invariantes para odometría y
SLAM, ya que las redes neurales han demostrado alcanzar un rendimiento
robusto en dichas condiciones gracias a sus propiedades de generalización.
Este trabajo también ha demostrado cómo la inserción de redes de memoria
a corto plazo (LSTM) permitía la obtención de secuencias temporalmente
consistentes, ya que la estimación también dependía de estados previos.
En cambio, el segundo trabajo adoptó una perspectiva más tradicional desde
un punto de vista puramente geométrica para el seguimiento de segmentos en
secuencias de imágenes en escenarios con cambios de iluminación severos o
entornos HDR. En esta contribución se demostró que, gracias a la naturaleza
más informativa de las líneas con respecto a los puntos, éstas pueden ser
detectadas y correspondidas a lo largo de secuencias de vídeo rápidamente,
simplemente teniendo en cuenta restricciones geométricas.

Adicionalmente, con el fin de suplir la falta de datos específicos para los
desafíos abiertos antes mencionados, esta Tesis Doctoral también aporta un
conjunto de datos visuales-inerciales que contienen situaciones desafiantes del
mundo real, especialmente entornos con poca textura e iluminación dinámica.
Con este conjunto de datos, pretendemos suplir esta falta de datos, permi-
tiendo así evaluaciones y comparaciones exhaustivas de los métodos en tales
condiciones, y ayudar al desarrollo de técnicas más robustas en entornos no
controlados.

Trabajos futuros
Aparte de las mejoras en la robustez, que motivaron este trabajo de tesis, hay
muchos otros temas interesantes para lograr un sistema SLAM fiable capaz de
trabajar en escenarios arbitrarios:

SLAM basada en aparencia en largo plazo. Un enfoque diferente del problema
del SLAM visual con respecto a los resumidos en Chapter 2, que en definitiva
estima la pose relativa con respecto a un mapa, se basa en apariencia. Uno de
los beneficios de este enfoque es su robustez ante cambios visuales drásticos,
tales como las que se producen entre secuencias que se toman durante el día y
la noche, los cambios estacionales, o cambios estructurales a largo plazo. Por
el contrario, en la actualidad estos métodos no son lo suficientemente fiables
para la relocalización métrica, donde los enfoques basados en características
siguen siendo los mejores, pero sin embargo no proporcionan invarianza a
tales cambios dramáticos en la apariencia.
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SLAM Activo. Una línea de investigación emergente que, en general, trata de
emplear la información de entrada para predecir automáticamente los ajustes
óptimos para cada situación. Por ejemplo, la mayoría de las implementaciones
de SLAM requieren un ajuste extensivo de parámetros, lo cual típicamente
se hace de manera empírica para un escenario dado, lo cual puede no ser
suficiente en escenarios arbitrarios. Otros ejemplos pueden ser el control de los
parámetros de la cámara con valores predichos para maximizar el rendimiento
de la misma, o proporcionar a los robots con cámaras móviles capaces de
predecir las partes del mapa más informativas para la tarea asignada.

Mapas Semánticos. Los métodos SLAM típicos consisten en un conjunto de
puntos de referencia 3D que pueden ser utilizados para tareas de robótica
como la evitación de obstáculos o la navegación, pero su principal ventaja
es la reducción de los errores modelados para una localización más precisa.
Por otro lado, este tipo de mapas están muy limitados para realizar, por
ejemplo, tareas más complejas como el reconocimiento de objetos/personas, o
misiones robóticas de nivel superior, como "Ir a la cocina", donde se requiere
un conocimiento contextual del entorno. Para ilustrar esto, una aplicación
autónoma de SLAM para coches podría beneficiarse del uso de información
semántica del entorno para predecir la pose del robot a partir de los objetos
estáticos mientras que al mismo tiempo estimando el estado de los objetos
dinámicos.

Deep-learning in SLAM. Finalmente, otro grupo de técnicas está empezando a
emerger en la comunidad SLAM, es decir, aquellos que emplean deep-learning
para proporcionar a los sistemas un conocimiento de alto nivel, que difícil-
mente se puede lograr con técnicas puramente geométricas [36]. Por ejemplo,
en [105] los autores combinan las CNN con SLAM geométrico, para pro-
porcionar mapas 3D semánticamente etiquetados en tiempo real. El deep-
learningtambién se ha utilizado para mejorar las técnicas tradicionales de
SLAM, e.g. [21], o incluso para proponer un sistema de SLAM denso con
estimación de mapas de profundidad enteramente aprendido [156].
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Introduction

Imagine for a moment that people could wear virtual reality (VR) devices that
allowed them to join a world with limitless possibilities, where for instance
an engineer could have visual feedback of the model being designed, surgeons
could rehearse their following surgeries with a realistic 3D model of the patient,
or a person could simply walk through a city and witness the recreation of some
of its historic moments. Furthermore, imagine that an autonomous car could
drive you to work and gather up your groceries moments before commuting
you back home, or unmanned autonomous vehicles (UAVs) played a vital role
in disaster assistance, or smart and telepresence robots could aid elderly people
in their daily tasks.

Not so long ago this conceptions were considered as unrealistic and futuris-
tic ideas only worth of science fiction tales as in Figure 1.1 , but as a matter of
fact, most of them are a reality nowadays, or at least it is not bold to assume
they will become one over the following years. In fact, there exist a few VR
companies, such as Oculus VR [5], that allow people to immerse themselves
to 3D movies, video-games or Google Earth [2] VR walks while interacting
with the virtual environment. There are also a number of companies, such as
Waymo [8] (formerly known as the Google self-driving car project [3]), Tesla [7]
or Nuro [4], presenting their different implementations of self-driving cars that
are currently being tested in cities like San Francisco. A different trend, from
companies such as Fotokite [1], provides almost unlimited flight time to UAVs
with a novel tethering technology combined with thermal images with the aim
of aiding workers in fire and rescue tasks. Moreover, many families have ac-
cess to autonomous vacuum cleaner robots, such as the Dyson 360 Eye [6],
that can be easily launched from an application in your smart-phone, or to
assistive mobile robots that support elderly people with cognitive and social
stimulation, assistance, and transparent monitoring [101].

1
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Figure 1.1: Nowadays it is not daring to imagine a future where one can wear some
virtual reality equipment and transport oneself to a world with limitless applications.
Photograph extracted from the movie Ready Player One (2018) based on Ernest
Cline’s novel of the same name.

In spite of the evident differences between many of the aforementioned ap-
plications, they all require the knowledge and some map representation of the
surrounding environment and, more importantly, they all need to accurately
know their relative localization (position and orientation) in such scenario.
These two, in principle, separated problems have been traditionally addressed
jointly in a set of techniques known as Simultaneous Localization and Mapping
(SLAM) that has been formulated and solved for uncountable sensor configu-
rations and in a large number of manners.

1.A Motivation
In the last years, SLAM has played a role of capital importance in the rapid
technological advances in VR/AR/MR (AR and MR stands for augmented
and mixed reality respectively) and robotics, as a vital part of their process-
ing pipelines and as baseline to the parallel development of more advanced
techniques such as obstacle avoidance, object recognition, task planning, se-
mantic mapping, and a long etcetera. As its name indicates, it comprises the
estimation of the state of a robot and, simultaneously, the incremental con-
struction and refinement of a consistent representation of the environment, i.e.
the so-called map, based on the equipped sensors. The robot state is usually
described by its pose, formed by the 2D/3D position and orientation, although
different aspects can be considered regarding the specific application, such as
velocity and acceleration, or sensor parameters, for instance the biases or the
intrinsic and extrinsic calibration between the on-board sensors.
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On the other hand, the map encompasses some aspects of interest repre-
senting the environment operated by the robot, and hence, it heavily depends
on the selected sensors. In consequence, there exist a wide variety of represen-
tations of the environment regarding both the application and sensor selection.
For instance, an occupancy-grid map can describe the scene for a surveillance
or a cleaning robot equipped with a laser range-finder, while a map comprised
by 3D features (for instance points) extracted from a camera attached to a
drone could be used in fire and rescue tasks. At the same time, the map in-
formation is further employed in the robot state estimation, thus reducing
the drift over time that more simple approaches, such as odometry or dead-
reckoning, quickly commit thanks to the benefit of re-visiting map areas, in
what is known as loop closure.

Nowadays, visual SLAM techniques, i.e. , those employing some sort of
camera, have reached a maturity with impressive results achieved in controlled
environments. In fact, from a theoretical and conceptual level, the scientific
community has even considered SLAM as a solved problem since the past
decade [43], and yet, nowadays it is one of the most active research topics
in computer vision and robotics and its popularity keeps growing. Of course,
one of the reasons behind it is the huge abyss between the theoretical per-
spective and the real problem with data coming from actual sensors and real
world unplanned inconveniences. With this considered, there are remaining
issues before achieving a robust SLAM solution for real situations, such as
highly dynamic environments, low-textured or feature-deprived scenarios, chal-
lenging illuminations, long-term or appearance changes, life-long maintenance
and scalability of the processed data, or even higher level understanding of the
maps from a semantic perspective.

1.B Contributions
This thesis contributes to overcome some of the aforementioned limitations
of traditional visual SLAM and/or odometry techniques by addressing the
problem from different perspectives. Concretely, this thesis aims to advance
the state of the art through a robust visual SLAM system that mitigates the
limitation of current techniques, i.e. , robustness to different types of environ-
ment, challenging illuminations, etc. In this context, the scope of the thesis
comprehends on one hand the design and implementation of new perception
and navigation algorithms that provide accurate localization and some type of
representation of the environment, and, on the other, the integration of such
approaches along with technologies in real world applications, such as mobile
robotics.

Thereby, the main contributions of this thesis can be grouped into two
major topics described in the following:
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1.B.1 Contributions to SLAM in Low-textured
Environments

The first set of works, presented in the papers [61,62,65,123] focuses on improv-
ing the robustness of visual odometry and SLAM techniques in low-textured
environments, where it is common that the performance of traditional ap-
proaches decreases due to difficulties in finding a sufficient number of reliable
point features. The effect in such cases is an accuracy impoverishment and,
occasionally, the complete failure of the system. In contrast, many of such
low-textured environments contain planar elements that are rich in straight
shapes, so an alternative feature choice such as line segments would exploit
information from structured parts of the scene.

In this context, we first contribute in [62] with a complete probabilistic
stereo visual odometry system that, thanks to the combination of both points
and line segments, was capable of robustly working in such difficult environ-
ments. Unfortunately, dealing with line segment features in images is not as
straightforward as the case of point features, since they are difficult to rep-
resent while also requiring higher computational burden for its detection and
tracking, hence increasing the complexity of the problem. Moreover, the con-
tribution presented in [123] employed this stereo visual odometry system to
develop and test a robust probabilistic model for the projection errors of point
features based on real data by modeling them with Gamma distributions which
improved both precision and accuracy of the system.

To alleviate these additional difficulties, we extended in [61] a popular semi-
direct approach to monocular visual odometry, known as SVO [53], to also
exploit information from line segments, hence obtaining a more robust system
capable of dealing with both textured and structured environments. As a direct
consequence, the proposed system allowed for faster feature tracking, since the
semi-direct framework eliminated the necessity of continuously extracting and
matching features between subsequent frames.

Finally, this thesis also contributes with PL-SLAM [65], a real-time stereo
visual SLAM system that combined both points and line segments to work ro-
bustly in a wider variety of scenarios. In this contribution, the importance of
both type of features are leveraged at all instances of the process: visual odom-
etry, keyframe selection, bundle adjustment, etc. Moreover, it contributes with
a loop closure procedure through a novel bag-of-words approach that exploits
the combined descriptive power of the two kinds of features. Additionally, the
resulting map is richer and more diverse in 3D elements, which can be ex-
ploited to infer valuable, high-level scene structures like planes, empty spaces,
ground plane, etc.

The developed algorithms have been compared with other state-of-art so-
lutions in well-known and publicly available datasets and benchmarks. Addi-
tionally, an open-source C++ implementation of the proposed algorithms was
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released along with the published articles and some extra multimedia material
for the benefit of the community.

1.B.2 Contributions to SLAM under Dynamic Illumination
and HDR Environments
In this second group of contributions, presented in [63,66], we deal with one of
the main open challenges in visual odometry and SLAM, i.e. its robustness to
difficult illumination conditions or high dynamic range (HDR) environments.
The main difficulties in these situations come from both the limitations of
the sensors and the inability to perform a successful tracking of interest points
because of some bold assumptions in SLAM, such as brightness constancy. The
work of this thesis contributes to mitigate these phenomena from two different
perspectives.

The first contribution, presented in [66], addresses this problem from a deep
learning perspective by enhancing images to more informative and invariant
representations for VO and SLAM, hence taking advantage of the generaliza-
tion properties of deep neural networks to achieve robust performance in varied
conditions. This work also demonstrates how the insertion of long short term
memory (LSTM) allows us to obtain temporally consistent sequences, since
the estimation depends on previous states. The claims are validated by com-
paring the performance of two state-of-art algorithms in monocular VO/SLAM
(ORB-SLAM [115] and DSO [49]) with the original input and the enhanced
sequences, showing the benefits of this approach in challenging environments.

Secondly, a more traditional perspective was exploited in [63], where a
purely geometric approach for the robust matching of line segments for chal-
lenging stereo streams with severe illumination changes or High Dynamic
Range (HDR) environments was proposed. This contribution claims that,
thanks to the fact that line segments are more informative, they can be suc-
cessfully tracked along video sequences by only considering their geometric
consistency along consecutive frames. The proposed approach was validated
by evaluating both the matching performance and motion estimation in chal-
lenging video sequences from benchmark datasets.
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1.B.3 Publications
The present thesis encompasses the following publications and, in some of the
cases, the source code and some demonstrative videos associated to them:

Journals

• Ruben Gomez-Ojeda, Francisco-Angel Moreno, David Zuñiga-Noël, Da-
vide Scaramuzza, and Javier Gonzalez-Jimenez. PL-SLAM: a Stereo
SLAM System through the Combination of Points and Line
Segments. IEEE Transactions on Robotics (2019), volume 35(3), pages
734-746. DOI: 10.1109/TRO.2019.2899783.
Video: https://youtu.be/-lCTf_tAxhQ
Source code: https://github.com/rubengooj/pl-slam

International Conferences

• Ruben Gomez-Ojeda and Javier Gonzalez-Jimenez. Robust stereo vi-
sual odometry through a probabilistic combination of points
and line segments. In IEEE International Conference on Robotics and
Automation (ICRA), Stockholm, Sweden (2016), 2521-2526.
DOI: 10.1109/ICRA.2016.7487406.
Video: https://youtu.be/RIw7RCAy1II
Source code: https://github.com/rubengooj/stvo-pl

• Ruben Gomez-Ojeda, Jesus Briales, and Javier Gonzalez-Jimenez. PL-
SVO: Semi-Direct Monocular Visual Odometry by Combining
Points and Line Segments. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), Daejeon, Korea (2016), 4211-4216.
DOI: 10.1109/IROS.2016.7759620.
Video: https://youtu.be/c9hcKdSjtps
Source code: https://github.com/rubengooj/pl-svo

• Ruben Gomez-Ojeda, Francisco-Angel Moreno, and Javier Gonzalez-Jimenez.
Accurate stereo visual odometry with gamma distributions. In
IEEE International Conference on Robotics and Automation (ICRA),
Singapore (2017), 1423-1428.
DOI: 10.1109/ICRA.2017.7989170.

• Ruben Gomez-Ojeda, Zichao Zhang, Javier Gonzalez-Jimenez, and Da-
vide Scaramuzza. Learning-based image enhancement for visual
odometry in challenging HDR environments. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Brisbane, Aus-
tralia (2018), 805-811.
DOI: 10.1109/ICRA.2018.8462876.
Video: https://youtu.be/NKx_zi975Fs
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• Ruben Gomez-Ojeda and Javier Gonzalez-Jimenez. Geometric-based
Line Segment Tracking for HDR Stereo Sequences. In IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), Madrid, Spain
(2018), 69-74.
DOI: 10.1109/IROS.2018.8593646.
Video: https://youtu.be/VpdpS1tuRvc

1.C Framework and Timeline
This thesis is the result of five years of work by the author as a member of the
Machine Perception and Intelligent Robotics (MAPIR) research group1, which
is part of the Department of System Engineering and Automation of the Uni-
versity of Malaga, where the author started working under the supervision of
Prof. Javier González Jiménez in the Master Thesis entitled A probabilistic ap-
proach to stereo visual odometry based on line segments. After this, the author
received an FPI grant (Formación de Personal Investigador), supported by
the Spanish Ministry of Economy and Competitiveness, which mainly funded
this doctoral research.

During this period, the author completed the doctoral program in Me-
chatronics Engineering at the Department of System Engineering and Au-
tomation where he acquired a strong background knowledge concerning the
four fundamental pillars of robotics: control systems, electronic systems, me-
chanical systems, and computers. The doctoral program was also completed
with several technical courses, such as “Scientific Writing” at the University
of Malaga, and with the participation in the “International Computer Vision
Summer School”, held in Sicily in 2016, which aimed to provide a stimulating
opportunity for young researchers and Ph.D. students with direct interaction
and discussions with world leaders in the field of Computer Vision.

From October 2016 to February 2017 the author completed a research
stay at the Robotics and Perception Group (RPG)2 belonging to both the
University of Zurich and ETH Zurich under the supervision of Prof. Dr. Davide
Scaramuzza. More recently, the author was a research intern at Oculus VR
(Facebook) in Zurich during the summer of 2018 under the direct supervision
of Dr. Matia Pizzoli, and he joined again in February 2019. At Oculus he also
had the opportunity of collaborating in world class projects in Virtual Reality
with Christian Forster, Michael Burri and Luc Oth.

Additionally, the author has been an active reviewer of manuscripts from
prestigious conferences and journals, such as the IEEE International Con-
ference on Robotics and Automation (ICRA, 2016, 2017, 2018, 2019, 2020),
the IEEE International Conference on Intelligent Robots and Systems (IROS,
2016, 2017, 2018, 2019), the IEEE Robotics and Automation Letters (RA-L,

1http://mapir.isa.uma.es/
2http://rpg.ifi.uzh.ch/
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2017, 2018, 2019, 2020), the International Journal of Robotics Research (IJRR,
2018), or the IEEE Transactions on Robotics (T-RO, 2019).

The FPI grant also offered the opportunity to collaborate as a laboratory
assistant with the Department of System Engineering and Automation. During
this thesis work, the author taught for two years “Robotics Programming” at
the Computer Science Faculty in the University of Malaga, and “Design of
Industrial Controllers” at the Engineering School in the University of Malaga.
The author was also co-supervisor of the Master’s Thesis of David Zúñiga
Noël, entitled SLAM based on Depth Sensors.

In addition to the research in the scope of this thesis, the author has been
also involved in other projects within the MAPIR group, some of them with
related topics:

• Taroth: New developments toward a Robot at Home: in this
project the three following targets are addressed: 1) improving depend-
ability of the robot motion, 2) integrating and exploiting semantics to
improve robot autonomy and interaction with humans, and 3) developing
a robot software architecture that can manage Ambient Assisted Living
services related to entertainment, domotics, social networking, safety,
etc.

• GiraffPlus: Combining social interaction and long term moni-
toring for promoting independent living: this project pursues the
creation of an intelligent environment to continuously record (24/7) data
derived from the person’s activity at home and from their physiological
parameters, and offering through them relevant and personalized infor-
mation for his doctor, nurse, and/or person in charge. The system is
completed with a telepresence robot in the house.

• PROMOVE: Advances in mobile robotics to promote the inde-
pendent life of elderly people: the goal of this project is to advance
through a personal robot that eases and prologues the independent life
of elderly people. For that, this projects proposes more robust, efficient
and effective solutions to mitigate the already existent limitations in the
state of the art of mobile robotics.

From the author’s work in these projects arose a number of additional pub-
lications:

Journals

• Manuel Lopez-Antequera, Ruben Gomez-Ojeda, Nicolai Petkov, and Javier
Gonzalez-Jimenez.Appearance-invariant place recognition by dis-
criminatively training a Convolutional Neural Network. Pattern
Recognition Letters (2017) 92, 89-95.
DOI: 10.1016/J.PATREC.2017.04.017.
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• David Zúñiga-Noel, Jose-Raul Ruiz-Sarmiento, Ruben Gomez-Ojeda, and
Javier Gonzalez-Jimenez. Automatic Multi-Sensor Extrinsic Cali-
bration for Mobile Robots. In IEEE Robotics and Automation Let-
ters (2019), Volume 4, Issue 3, 2862 - 2869.
DOI: 10.1109/LRA.2019.2922618.
Source code: https://github.com/dzunigan/robot_autocalibration

• David Zuñiga-Noël, Alberto Jaenal, Ruben Gomez-Ojeda, and Javier Gonzalez-
Jimenez. The UMA-VI Dataset: Visual-Inertial Odometry in
Low-textured and Dynamic Illumination Environments. Accepted
in International Journal of Robotics Research (2020).
Dataset: http://mapir.uma.es/work/uma-visual-inertial-dataset.

Conferences

• Ruben Gomez-Ojeda, Jesus Briales, Eduardo Fernandez-Moral, and Javier
Gonzalez-Jimenez. Extrinsic calibration of a 2d laser-rangefinder
and a camera based on scene corners. In IEEE International Confer-
ence on Robotics and Automation (ICRA), Seattle, United States (2015),
3611-3616.
DOI: 10.1109/ICRA.2015.7139700.
Video: https://youtu.be/frRKTZ1utJ0

• David Zúñiga-Noel, Ruben Gomez-Ojeda, Francisco-Angel Moreno, and
Javier Gonzalez-Jimenez. Calibración extrínseca de un conjunto
de cámaras RGB-D sobre un robot móvil. In XXXVIII Jornadas
de Automática (2017).

International Workshops

• Ruben Gomez-Ojeda.Visual Odometry and SLAM using Line Seg-
ment Features. Invited speaker at the International Workshop on Lines,
Planes and Manhattan Models for 3-D Mapping (LPM17), as part of the
2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) in Vancouver, Canada (2017).

Technical reports

• Ruben Gomez-Ojeda, Manuel Lopez-Antequera, Nicolai Petkov, and Javier
Gonzalez-Jimenez. Training a convolutional neural network for
appearance-invariant place recognition. University of Malaga (2015).
arXiv preprint arXiv:1505.07428.

1.D Outline
The rest of this thesis is organized as follows (Figure 1.2 includes a diagram
with the structure as well):
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Chapter 2: Simultaneous Localization and Mapping reviews the
state of the art of this important problem and briefly describes the most
extended techniques: feature-based, direct and semi-direct approaches.
The chapter also analyzes the remaining challenges for visual odometry
and SLAM while placing the work of this thesis in the context of visual
SLAM.

Chapter 3: Robustness to Low-textured Environments describes
the difficulties suffered by most traditional solutions in low-textured
environments, in which their performance usually deteriorates. This
chapter also presents four different thesis contributions, the first three
are purely odometry approaches and the last one is a complete SLAM
system, in the context of improving robustness of VO/SLAM in low-
textured environments, all of them presented along with publicly avail-
able C++ libraries.

Chapter 4: Dealing with Dynamic Illumination and HDR Envi-
ronments is one of the main open challenges in visual SLAM, where
difficulties come from both the limitations of the sensors and the bold
assumptions often introduced in the algorithms to alleviate computa-
tional requirements. In this chapter two different contributions to this
topic are presented, one from a deep learning perspective, and another
one from a geometrical point of view to allow feature tracking in such
conditions.

Chapter 5: Dataset for Low-textured, Dynamic Illumination and
HDR Environments proposes a visual-inertial dataset containing
real-world visually challenging situations, focusing on environments with
little texture or difficult and dynamic illuminations. The goal of this
dataset is to provide a benchmark for the evaluation of visual-inertial
odometry algorithms in these situations, allowing to evaluate the ac-
cumulated drift of the trajectory with the purpose of easily measuring
and comparing results from different algorithms.

Chapter 6: Conclusions provides some final insights drawn from the
work done in this thesis and briefly introduces the future lines still open
to research in relation to the contributions of this work.
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Figure 1.2: Scheme relating the main parts of this thesis.





2
Simultaneous Localization and Mapping

2.A Introduction
Typically, a modern SLAM system can be divided into two different parts, i.e.
the front-end and back-end. The first one, the front-end, attempts to process
the incoming data from on-board sensors and extracts relevant features, for
instance in the case of images, distinguishable points from the environment. It
also performs necessary data association between the features and their cor-
responding 3D landmarks, and loop closure detection or verification with the
map data. In contrast, the back-end processes data from the front-end, hence
inferring the state of the robot, while also estimating the optimal position of
the 3D landmarks or sensor parameters, such as calibration, biases, and so on.
Whereas it is fairly difficult to write analytically the front-end equations for
any configuration, since it is highly dependent on the sensors mounted in the
robot, the formulation for the SLAM back-end became standard in the early
2000s, especially after the surveys from Durrant-Whyte and Bailey in [16,43].

Currently, the de-facto formulation of the SLAM back-end, was first in-
troduced by Lu and Milios [99] followed by the work of Gutmann and Kono-
lige [67]. Although a large number of approaches have been proposed to im-
prove many aspects of the previous formulation, for instance robustness or ac-
curacy, most of them coincide in posing the problem as maximum a posteriori
(MAP) estimation. To explain this well-known formulation we have followed
the notation in [24]. For that, let X be the group of unknown variables defining
the SLAM problem:

X = {xi, lj | (i ∈ 1, ...,m) , (j ∈ 1, ...,n)} (2.1)

13
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Figure 2.1: Typically, a SLAM problem is represented as a factor graph [39] where
nodes represent robot states (red circles) and landmarks (blue circles), which are con-
nected by sensor measurements (red arrows), odometry observations (blue arrows),
or loop closures (green arrows).

with xi and lj typically representing the set of robot states and map landmarks,
respectively. In order to estimate the solution to this problem, a number of
measurements Z is extracted from the specific sensor setting, also known as
observations, i.e. :

Z = {zk | (k ∈ 1, ...,p)} (2.2)

where every measurement zk is associated to a single state xi and landmark lj
(for simplicity we omit these indices in the derivation) and can be expressed
as a function, typically non-linear, of X :

zk = hk(X ) + εk (2.3)

where hk(·) is known as the observation model (in practice, measurements only
depend on a small subset of the variables), and εk is a random measurement
noise.

Then, the MAP estimation aims to obtain the value of X by maximizing
the posterior p(X|Z), i.e. , the belief over X given the set of observations Z,
which can be expressed as follows after applying Bayes theorem:

X ∗ = argmax
X

p(X|Z) = argmax
X

p(X ) p(Z|X ) (2.4)
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where p(Z|X ) represents the likelihood of the observations given the set X ,
p(X ) is the prior about X , and X ∗ is the optimal assignment that maximizes
the posterior p(X|Z).

The MAP estimation in (2.4) equals to maximum likelihood estimation
when there is no prior information about X , since this term becomes constant
and can be dropped from the optimization. In the case of assuming independent
measurements Z, it can be expressed as:

X ∗ = argmax
X

p(X )
p∏
k=1

p(zk|X ) (2.5)

This problem is typically interpreted in terms of a factor graph, the variables
X corresponding to the nodes of the graph, where the factors of the graph
represent probabilistic constraints to the graph over a subset of nodes. To
illustrate this, the scheme depicted in Figure 2.1 shows the different nature of
the factors typically considered in the SLAM problem.

The first type are the odometry factors, represented as uidx, that typically
constrain the motion from consecutive states, for instance incremental wheel
odometry. Secondly, the sensor measurements can be represented by zk, in
this case it corresponds to the observation of the landmark lj at the state
xi, and they encode useful information for the MAP estimation in (2.5), for
instance, in the form of observations of a similar feature over several states.
Finally, loop closures are represented by cidx. Typically, they can be interpreted
similarly to the above-mentioned factors, but with the particularity that they
relate topologically distant nodes or states. In fact, this is one of the key
aspects of a SLAM system. Without the inclusion of loop closure factors, the
problem in (2.5) reduces to pure odometry since it interprets the world as an
"infinite corridor" and in consequence, the system always considers the robot is
exploring unseen areas. Alternatively, when including the loop closure factors
the system recognizes that the new state, xi+2 in the case of Figure 2.1, belongs
to a previously mapped area, which allows to reestablish the connections of
the graph, hence reducing the accumulated drift over the robot trajectory.

If now it is assumed, as it is extended in literature, that the sensor mea-
surements zk follow Gaussian distributions with an expected value (mean) of
hk(X ) and covariance matrix Σk = Ω−1

k its likelihood can be written as:

p(zk|X )∝ e
‖hk(X )−zk‖2Ω−1

k (2.6)

where the exponent, ‖hk(X )−zk‖2Ω−1
k

, is the Mahalanobis distance, typically:

‖x‖2A = xTAx. Furthermore, under these circumstances, the MAP estimation
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is equivalent to minimizing the negative log-likelihood over the posterior and
hence, the problem in (2.5) can be expressed as:

X ∗ = argmin
X

− log
(
p(X )

p∏
k=1

p(zk|X )
)

= argmin
X

p∑
k=0
‖hk(X )−zk‖2Ω−1

k

(2.7)
where it can be noticed that the prior has been written similarly to the sensor
measurements for k= 0 (in practice, it is typically assumed to follow a uniform
distribution thus neglected from the optimization). The previous formulation
is for a versatile and well-known representation of the SLAM back-end, ex-
pression (2.7) is a least squares problem, hence allowing for many theoretical
solutions, typically addressed for different sparsity levels of the graph.

In contrast, it is not straightforward to propose a unified formulation for
the front-end part of a SLAM system since it strongly depends on the type of
robot, the on-board sensors, or the application requirements. Initially, SLAM
approaches were mainly proposed for mobile robots carrying 2D laser range-
finders that commonly constrained the estimation to planar motions, and they
also had an elevated price [40]. In that context, cameras started to be a highly
suitable sensor choice for robotics applications due to their relatively cheap
price in comparison with other sensors, and also since they proved to provide
more useful information to other modules, such as obstacle avoidance, object
recognition, task planning, semantic mapping, and a long etcetera. Although
initially the proposed solutions were unfeasible for real applications, mainly
due to the higher computational requirements, with the advances in computing
the first real-time SLAM systems based on cameras started to appear [37] [78]
and nowadays visual SLAM has reached an extraordinary maturity [24]. The
rest of the chapter reviews the state of the art in visual SLAM regarding the
most differentiable types of front-ends, and concludes with an overview of the
open challenges for visual SLAM, putting in context the work of this thesis.

2.B Overview of Visual SLAM Techniques
Among others, visual SLAM (and odometry) has been addressed using a wide
variety of sensors such as monocular [149], stereo [116], RGB-D [83], omnidi-
rectional [28], and, more recently, event cameras [114] [56]. In regard to the
type of errors utilized to tackle this problem with visual sensors, one can first
differentiate between indirect and direct methods [49]. The former approach,
better known as feature-based, typically pre-process the sensor measurements
to produce an intermediate representation of the image information in form of
features, commonly keypoints, then minimizing the geometric errors between
the predictions and the observations. In contrast, the latter approach directly
employs the actual sensor values, i.e. pixels intensity, over a time window, thus
minimizing the photometric errors.
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Recently, a hybrid approach, also known as semi-direct, has emerged with
the aim to offer an efficient compromise between the two aforementioned ap-
proaches, for which they first use direct formulation for initial alignment and
data association then refining the solution with the indirect formulation. In the
following, we briefly describe these three different approaches in the current
context.

2.B.1 Indirect Methods
In a nutshell, the front-end of a traditional feature-based approach has three
main functionalities. The most important one provides accurate initial values
to the problem in (2.7), typically by locally estimating the visual odometry
through least-squares minimization of the geometric errors. The visual odom-
etry problem is usually addressed in a similar way to the SLAM back-end,
however, it only considers short-term data association and constraints, i.e. , it
discards old parts from the map and loop closures. In fact, it can be seen as
a simplified version of the problem in (2.7) where only local factors are con-
sidered, i.e. the map is never revisited. For instance, the simplest case would
only estimate the current state of the robot simply considering observations
from the previous frame hence dramatically reducing the computational re-
quirements of the SLAM problem. In contrast, a more complex case would
also consider several past states and the visible landmarks, in an intermediate
approach between the full problem (2.7) and the simplest VO, hence requiring
some mechanism to marginalize out redundant or past information to solve
this problem in real-time, for instance considering only frames with common
features with the current keyframe [115].

Accordingly, the front-end requires the implementation of a data associa-
tion module which manages the tracking of the distinctive features, and also
involves outlier detection and rejection, which require a pre-computation time.
Moreover, the depth of the features needs to be estimated in order to initialize
the 3D landmarks before recovering the different states. This step is addressed
individually for every type of sensor since they require different levels of compu-
tation, for instance, while RGBD cameras allow to directly read the depth of a
pixel, monocular techniques require several views and an explicit parametriza-
tion, e.g. inverse depth [31], and they also suffer from scale ambiguity.

Finally, the front-end also deals with long-term data association by detect-
ing and validating previously visited places, i.e. , loop closures, and establish-
ing correspondences with the detected part of the map [46]. The detection step
is addressed by storing a database of encoded information for each keyframe,
typically with a bag-of-words [57] approach employed to recognize previously
visited places in the previous parts of the sequence. Then, the relative pose
between the current and the previously visited keyframes can be estimated
through the established correspondences, and then, the pose is further em-
ployed to correct the drift accumulated in the inner loop.
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2.B.2 Direct Methods
One of the major drawbacks of feature-based techniques is the necessity of
dealing with feature extraction and matching every incoming frame while also
dealing with incorrect data association. This is a highly time consuming stage
(it usually requires an elevated part of the per-frame available time) and con-
sequently, in most algorithms this module is optimized for speed rather than
precision. Moreover, since indirect methods rely on very distinctive geometric
features, they only exploit a small part of the available information, which can
bias the estimation if, for instance, the features are not well-distributed over
the image.

In contrast, direct methods avoid to explicitly deal with this feature de-
tection step by minimizing some photometric error based on the actual sensor
readings from a certain location over a time period. As a result, such methods
do not involve robust data association techniques since pixel are indirectly
corresponded by the geometry of the problem, however, this usually requires a
good initialization close to the convergence radius which is typically achieved
with coarse-to-fine frameworks [50]. Although direct methods have proven to
outperform feature-based methods in terms of robustness [49], they involve
cumbersome operations to compute the photometric error, such as image warp-
ing over large regions of the image, often requiring GPU acceleration.

2.B.3 Semi-direct Approach
Alternatively, there are hybrid approaches, such as SVO [53], which bene-
fit from the use of both the indirect and direct formulations. On one hand,
semi-direct approaches usually involve feature detection and correspondence,
however, the data association is an implicit consequence of direct image align-
ment. For that, semi-direct methods use small patches for every feature and
obtains a rough estimation of the camera motion with this sparse model-based
image alignment that, as a consequence, also provides feature correspondences.
This is highly beneficial from a computational point of view, since feature de-
tection is only performed whenever a new keyframe is inserted and there is
no need of computing feature descriptors or matching them, and therefore,
it highly reduces the computational time of the pipeline. On the other hand,
as soon as the rough estimation of the camera pose and the feature corre-
spondences are estimated, the algorithm then switches to the classic indirect
formulation, which allows to efficiently solve the problem with the well-known
indirect methods.
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2.C Remaining Challenges for Visual Odometry
and SLAM
In the last 20 years, visual SLAM techniques have reached maturity with
impressive results achieved in controlled environments. In fact, the scientific
community has considered SLAM as a theoretically solved problem since the
past decade, of course in static environments, as Durrant-Whyte and Bailey
stated in 2006 [43]: At a theoretical and conceptual level, SLAM can now be
considered a solved problem. However, substantial issues remain in practically
realizing more general SLAM solutions and notably in building and using per-
ceptually rich maps as part of a SLAM algorithm.

Today, more than a decade later, its popularity has not stopped growing,
it is still one of the most active research topics, and indeed, the question of Is
SLAM solved? remains in the air for the scientific community [24]. The reason
behind is that, even with the impressive results achieved by the state-of-art
techniques, there are many open challenges to address before reaching a robust
SLAM system, and also further research issues that deserve to be investigated.

One of the first remaining issues is the robustness of a SLAM system for
long-term operations in uncontrolled environments, where classical assump-
tions do not stand anymore. For instance, it is typical to assume that the
environment the robot is moving through remains unchanged and static, both
in the short-term, e.g. , people surrounding the robot, and in the long-term,
e.g. , the appearance of an office will inevitably change. Another phenomenon
that particularly affects the accuracy of SLAM system is perceptual aliasing,
which results in wrong data association due to both incorrect matches (out-
liers) or correct matches rejected by the front-end (false negatives). This thesis
contributes to improve robustness in harsh or difficult environments, in par-
ticular:

Low-textured Environments, where it is usual that the performance of
traditional approaches decreases due to difficulties in finding a sufficient num-
ber of reliable point features. The effect in such cases is an accuracy impov-
erishment and, occasionally, the complete failure of the system. In contrast,
many of such low-textured environments contain planar elements that are
rich in straight shapes, so an alternative feature choice, such as line segments,
would exploit information from structured parts of the scene.

Difficult Illumination conditions or high dynamic range (HDR) environ-
ments. The main difficulties in these situations come from both the limita-
tions of the sensors, e.g. , quick changes from dark to bright areas might
over-expose the images, and the inability to perform a successful tracking
of interest points because of bold assumptions in SLAM such as brightness
constancy, which do not stand in these conditions.
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Besides robustness, which has mainly focused the goals of this work, there
are many other research topics that remain open from an academic and in-
dustrial point of view, such as fail recovery, robustness to hardware failure,
appearance changes (such as day to night or seasonal ones), automatic param-
eter tuning, scalability, and a big etcetera. The reader can find a more complete
review on the current state of SLAM and a more exhaustive analysis on some
possible future research lines in [24,36].



3
Robustness to Low-textured Environments

3.A Introduction
The previous chapter briefly introduces the current techniques to address the
Simultaneous Localization and Mapping (SLAM) problem, while at the same
time it outlines the still open challenges to navigate through a robust system
capable of working autonomously in uncontrolled situations. Typically, the
performance of any of the traditional approaches already mentioned usually
decreases in low-textured environments due to difficulties in finding a large or
a fairly distributed set of keypoint features, which typically causes an accuracy
impoverishment and even the complete failure of the system.

In contrast, most of such low-textured environments are rich in planar ele-
ments (they are typically human made indoor scenarios) which makes possible
to extract informative line segment features from the linear shapes present in
the scene. In this chapter, one of the main claims is that these two types of
features, i.e. , keypoints and line segments, complement each other and its
combination leads to a more versatile, robust and stable SLAM system ca-
pable of working in all types of scenarios. Additionally, the estimated maps
comprising both types of 3D features provide a richer representation from
the environment, thanks to the inclusion of structural information from the
scenario. As a consequence, a number of applications performing higher level
tasks (such as place recognition, semantic mapping, task planning, etc.) can
significantly benefit from the useful information that can be inferred from the
combined maps.

21
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3.B Contributions
In this context, the work of this thesis first contribute in [62] with a complete
probabilistic stereo visual odometry system that, thanks to the combination of
both points and line segments, is capable of robustly working in such difficult
environments. Unfortunately, the difficulties in dealing with line segment fea-
tures involves, among others, a higher complexity in both the representation
and the computational requirements for its detection and tracking, hence in-
creasing the complexity of this problem. Moreover, the contribution presented
in [123] employed this stereo visual odometry system to develop and test a
robust probabilistic model for the projection errors of point features based on
real data by modeling them with Gamma distributions which improved both
precision and accuracy of the system.

To alleviate this additional requirements, in the second contribution of this
chapter [61] a popular semi-direct approach to monocular visual odometry,
known as SVO [53], to simultaneously exploit information from line segments.
In consequence, the proposed system allowed for a faster feature tracking, since
the semi-direct framework eliminated the necessity of continuously extracting
and matching features between subsequent frames, and for a more robust sys-
tem capable of dealing with both textured and structured environments.

At last, the contributions of this chapter conclude with PL-SLAM [65],
a real-time stereo visual SLAM system that combined both points and line
segments to work robustly in a wider variety of scenarios. In this work, the
impact of both type of features is leveraged at all instances of the SLAM
pipeline: visual odometry, keyframe selection, bundle adjustment, loop closing,
etc. Additionally, the resulting map is richer and more diverse in 3D elements,
which can be exploited to infer valuable, high-level scene structures like planes,
empty spaces, ground plane, etc.

The developed algorithms have been compared with other state-of-art so-
lutions in well-known and publicly available datasets and benchmarks. Addi-
tionally, open-source C++ implementations of the proposed algorithms were
released along with the published articles and some extra multimedia material
for the benefit of the community.
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Robust Stereo Visual Odometry
through a Probabilistic Combination of Points

and Line Segments
Ruben Gomez-Ojeda and Javier Gonzalez-Jimenez

Abstract
Most approaches to stereo visual odometry reconstruct the motion
based on the tracking of point features along a sequence of images.
However, in low-textured scenes it is often difficult to encounter
a large set of point features, or it may happen that they are not
well distributed over the image, so that the behavior of these algo-
rithms deteriorates. This paper proposes a probabilistic approach
to stereo visual odometry based on the combination of both point
and line segment that works robustly in a wide variety of scenarios.
The camera motion is recovered through non-linear minimization
of the projection errors of both point and line segment features.
In order to effectively combine both types of features, their asso-
ciated errors are weighted according to their covariance matrices,
computed from the propagation of Gaussian distribution errors in
the sensor measurements. The method, of course, is computation-
ally more expensive that using only one type of feature, but still
can run in real-time on a standard computer and provides inter-
esting advantages, including a straightforward integration into any
probabilistic framework commonly employed in mobile robotics.

3.C.1 Introduction
In recent years, visual odometry (VO) has gained importance in robotics ap-
plications such as ground vehicles moving on uneven terrains, or unmanned
aerial vehicles (UAVs). An alternative to VO in these cases is the use of in-
ertial measurement units (IMUs), but they are not able to cancel the gravity
effects precisely, accumulating large errors over time. Traditional solutions also
include wheel odometry, which cannot replace VO since it only works with
smooth and planar movements, and GPS-based navigation systems, which are
limited to open outdoor environments and are unable to estimate the orien-
tation of the device they are attached to. An additional advantage of VO is
that the information required (provided by cameras) can be exploited for other
navigation-related tasks such SLAM [113] and scene recognition. Visual odom-
etry can be addressed with a single camera [45] [87] [51], stereo cameras [86], or
RGB-D sensors [84] [76]. Moreover, two methodologies have been considered
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(a) (b)

(c)

Figure 3.1: (a) Texture-less scenes are challenging for traditional point-based SVO
approaches. (b) Synthetic frame extracted from the Tsukuba dataset. (c) Frame
extracted from the KITTI dataset, where both point and line features are abundant.

in the literature: appearance-based and feature-based. The first group, known
as dense approach, works on the whole image assuming some kind of photo-
consistency between the successive frames [53] [50]. An alternative strategy
consists of matching some relevant features (either points or lines) in the im-
ages, and then estimates the pose increments by establishing some rigid-body
constraints between those features. Most visual odometry systems are based
on feature points, since they are easily detectable and matchable. Some re-
markable works following this approach are [119] and [59]. In the former, the
authors report a stereo visual odometry (SVO) system based on an iterative
estimation of the 6DoF camera motion. The point features are detected with a
variant of the Harris corner detector and matched according to their normal-
ized correlation. In the latter, the authors propose an algorithm which employs
point features in combination with a sparse feature matcher to reconstruct the
3D pose of a stereo camera given a sequence of images. Those methods have
proven to work fast and robustly in many environments, but their behavior
in low textured scenes, such as the one in Figure 3.1(a), deteriorates since
it is difficult to find a large set of reliable points. In contrast, line segments
are usually abundant in any human-made environment, even in low textured
scenes, but these methods are not so common in literature since the detec-
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tion of lines involves a high computational cost. In that context, Witt and
Weltin [150] proposed the Iterative Closest Multiple Lines (ICML) algorithm,
where the Iterative Closest Point (ICP) algorithm is adapted to the case of line
segments. This approach estimates simultaneously the correct matches and the
pose increment by considering one-to-many line matches inside a non-linear
optimization process, which works well under the assumption of small rota-
tions. While this proposal yields a good performance in fast video sequences, it
has certain tendency to fall into local minima, thus the authors also propose a
robust hypothesize-and-test algorithm as a failure detection step. However, in
highly textured environments (e.g. outdoor scenes) the number and quality of
the detected lines decreases, and, in consequence, the performance of the algo-
rithm. This problem is addressed by Koletschka et al. [90] with a strategy that
efficiently combines point and line features, and hence it can work in different
environments. They also propose an algorithm for the stereo matching of the
line segments which computes the sub-pixel disparity of the endpoints of the
line and deals with partial occlusions. None of the above-mentioned proposals
takes into account the probabilistic entity of the features employed since they
face the SVO problem in a deterministic way. While this alternative has the
advantage of being more efficient computationally, the probabilistic treatment
of the variables reduces the undesirable effect of noisy measurements in the
optimization, and allows the estimated variables (poses and landmarks) to be
easily integrated in probabilistic frameworks which are commonly used in mo-
bile robotics. In this paper we propose a complete probabilistic SVO system
that works robustly in different environments thanks to the combination of
both points and line segments, which usually provide complementary informa-
tion. The incremental pose of the stereo camera is recovered iteratively through
probabilistic on-manifold optimization of the projection errors, which are com-
puted between the projected features from the first frame and those detected
in the second frame. We estimate the uncertainty of all the variables involved
in the stereo process, which are assumed to follow Gaussian distributions, and
then introduce them as weights in the cost function minimization, increasing
the robustness to noise and yielding more accurate results. The source code
of the developed C++ Stereo Visual Odometry library is available online, and
will be updated as research progresses. An illustrative video of our SVO system
and the source code can be found here: http://mapir.isa.uma.es

3.C.2 System Overview
In a nutshell, we track the features (points and segments) in a sequence of
stereo frames and compute their 3D position and their associated uncertainty.
The 3D landmarks are then projected to the new camera pose, where an error
function is minimized in order to end up with both the pose increment of the
camera and the uncertainty of this estimation. In the following we introduce
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each step of the SVO system and describe the most important details of its
implementation.

Point Features

For dealing with feature points, we employ the ORB [126] detector and de-
scriptor due to its efficiency and good performance. In order to reduce the
number of outliers, we only consider the measurements that are mutual best
matches, i.e. the best match in the left image corresponds to the best match in
the right one. To ensure that the correspondences are meaningful enough, we
also check that the distance in the description space between the two closest
matches is above certain threshold, which is set to the double of the distance
of the best match. We also ensure a fair distributions of points over the input
images with a bucketing approach that divides the image in 16 buckets, and
tries to add at least 20 features in each.

Line Segment Features

The line segments are detected with the Line Segment Detector (LSD) [147],
which has a high precision and repeatability. However, it is time consuming,
which is its major weakness for real-time applications. To mitigate this, we
detect the line segments in a parallelized framework in both stereo images.
For the stereo matching and frame-to-frame tracking we first compute the
LBD descriptors [154] for each line, and match them based on their local
appearance features. Similarly to the case of points, we check that both features
are mutually best matches, and also that the best two matches are sufficiently
separated in the description space. We have not applied a bucketing strategy
in the line segments detection, since it provides less reliable features and hence
yields poorer results.

Motion Estimation

Once the features have been tracked from a stereo frame to the next one,
the line segment endpoints and the feature points are back-projected. Then,
the motion is estimated iteratively through a probabilistic Gauss-Newton mini-
mization of the line and point projection errors. The negative effect of incorrect
correspondences is reduced by employing a Pseudo-Huber loss function to de-
tect and remove the outliers, as proposed in [112]. The complete process will
be detailed in Section 3.C.3.

Uncertainty Propagation

In order to improve the precision of the incremental pose estimation, we weight
the errors with the inverse of the error covariance matrix. This covariance ma-
trix is obtained by propagating the feature errors which are assumed to be
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zero-mean Gaussian distributed (a common hypothesis in computer vision).
Ultimately, this propagation process ends up with the uncertainty of the es-
timated pose, which makes our system suitable to be easily integrated in any
probabilistic robotic algorithm. The error distributions will be described and
validated in Section 3.C.4.

3.C.3 Combined Stereo Visual Odometry
The straightforward approach to compute the camera motion in a SVO system
minimizes the error of the 3D features reconstructed from two consecutive
stereo frames (i.e. 3D error minimization as in [111]). This procedure has
the advantage of a closed form solution but, in practice, it is not the best
option since it is strongly affected by the euclidean errors induced by the noisy
measurements of the features, which may lead to large motion error in the
estimated odometry. Instead, a more precise approach is that of projecting the
3D points (the endpoints in the case of line features) from the first frame to
the second one, thus the motion is obtained by 2D error minimization of the
features in the image.

3.C.3.1 Problem Statement

Let C and C′ be the stereo coordinate systems (typically placed at the left
camera) at two consecutive poses, related by the relative transformationT(ξ)∈
SE(3), where ξ ∈ se(3) is the 6-vector of coordinates in the Lie algebra se(3).
The problem we face is that of estimating the optimal T(ξ∗) that minimizes
the projection error for points and line segments (expressions (3.1) and (3.2)
below, respectively) under the hypothesis that the measurements are affected
by unbiased Gaussian noise (as modeled in Section 3.C.4). The stereo camera
is assumed to be in an ideal configuration with a baseline b, and the calibration
parametersK are either provided by the manufacturer or known from previous
calibration. The point projection error ∆pi(ξ) is given by:

∆pi(ξ) = p̂i(ξ)−p′i (3.1)

with p′i being the i-th detected point in the second frame, and p̂i(ξ) the pro-
jected point from the first frame to the second one, both in homogeneous
coordinates. With that notation, we define the line equation in the second im-
age l′j as the cross product between the endpoints of the line in homogeneous
coordinates, denoted as p′j and q′j respectively. The line projection error is
defined as a vector formed by the euclidean distances from the projected end-
points of the line segments in the first frame and the line detected in the second
frame, i.e.:

∆lj(ξ) =
[
l′j
> · [p̂j(ξ) q̂j(ξ)]

]> (3.2)
where p̂j(ξ) and q̂j(ξ) refer to the projected endpoints, and l′j is the j-th
infinite line detected in the second frame.
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3.C.3.2 On-Manifold Optimization

The optimal pose increment T(ξ∗) is computed through an iterative minimiza-
tion of the Maximum Likelihood Estimator (MLE) which selects the model ξ∗
for which the probability of the observed data becomes maximum. Under the
assumption that the data is corrupted by unbiased Gaussian noise, the MLE
coincides with the following non-linear least-squares estimator:

ξ∗ = argmin
ξ

{ Np∑
i

∆pi(ξ)>Σ−1
∆pi

∆pi(ξ)

+
Nl∑
j

∆lj(ξ)>Σ−1
∆lj

∆lj(ξ)>
}

(3.3)

where Np and Nl corresponds to the number of point and line correspondences
respectively, and the matrices Σ−1

∆pi
and Σ−1

∆li
are the 2× 2 inverse of the

covariance matrices for each type of feature. We calculate the optimal solution
through iterative Gauss-Newton optimization on the manifold tangent space
se(3). In this case, the Jacobian matrix is expressed as follows:

J(ξ) = ∂E(ξ⊕ε)
∂ε

∣∣∣∣
ε=0

(3.4)

where the vector E contains both line and point projection errors, and the
operator ⊕ : se(3)× se(3) 7→ se(3) is a generalization of the normal addition
operator for Euclidean spaces. For further details on the mathematics, please
refer to [19].

3.C.3.3 Fast Outlier Rejection

Due to inaccuracies in the feature detection and tracking process the presence
of outliers in the observed data is unavoidable, which leads the optimization
process to unreliable results. Besides, the assumption of Gaussian distribution
errors renders the system to be highly vulnerable to outliers. In order to deal
with this phenomena we have implemented a variant of the ERODE outlier
detector [112], which performs a fast and efficient outlier removal based on
radial distributions, due to its computational performance. Concretely, we have
employed the Cauchy loss function to robustify the MLE:

ρ(s) = log(1 +s) (3.5)

where the input s corresponds to each component of the error vector in (3.3).
With this function, the minimization process converges to the true solution,
and after a few iterations, the outliers can be easily detected and removed as
they present large residuals. Finally, the minimization process is relaunched
with the inliers to obtain the optimal solution.
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3.C.4 Uncertainty of the Error Functions
The advantage of combining different types of features of the scene, namely
points and line segments, relies on their proper weighting in the cost func-
tion, which in turn comes from their observation errors. Specifically, this is
implemented in the optimization process by weighting the measurements with
the inverse of the uncertainty of the projection error from each feature, as
expressed in (3.3) with the matrices Σ−1

∆pi
and Σ−1

∆lj
. These matrices, which

are intended to account for errors in image quantization and in the detection
process, are obtained by estimating the Jacobians of the error functions (equa-
tions (3.1) and (3.2)) with respect to the observations x, which includes both
point and line segment observations pi and lj respectively, i.e.:

Σ∆ki
≈ ∂∆ki

∂x Σx
∂∆ki
∂x

>
(3.6)

where the subindex k ∈ {p, l} refers to the type of the error function (points
or lines). The observation uncertainties Σx are modeled as bi-dimensional
Gaussians with standard deviations σx = σy = 1 pixel in the image plane,
for both points and endpoints of the line segments. As stated in [70], the
uncertainty of the optimal pose is approximated by the inverse of the Hessian
of the cost function in (3.3), expressed as

Σξ∗ ≈
(
J(ξ∗)>W(ξ∗)J(ξ∗)

)−1 (3.7)

where J(ξ∗) is the full Jacobian in (3.4) that contains both point and line
error functions, and W(ξ∗) is a block-diagonal matrix containing the uncer-
tainty of each projection error for each type of feature. Then, the camera pose
increment follows a 6D normal distribution with mean the optimal pose ξ∗,
and covariance matrix Σξ∗

ξ ∼N (ξ∗,Σξ∗) (3.8)

3.C.4.1 Detecting ill-Pose Configurations

For some spatial distributions the problem may be ill-posed. Such situations
can not be detected before the optimization process, since it also depends on
the relative motion of the camera. However, this information can be derived
from the covariance matrix Σξ∗ . If we express this matrix in diagonal form,
their elements give us the variance of the estimated motion parameters ξ∗ in
the space of the eigenvectors. This information can be employed to neglect
those motion terms whose uncertainty is too high. This strategy is very useful
when data from other sources, such as IMUs, GPS, wheel odometry, etc., are
available, and that information can be fused with our SVO estimation leading
to more robust solutions.
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Figure 3.2: New University of Tsukuba Stereo Dataset. (a) Line and point matches
after visual odometry estimation (the outliers and inliers are plotted in red and green
respectively). (b) Top view of the trajectory. (c) Side view of the trajectory.

3.C.5 Experimental Validation
In this section we illustrate the benefits of the weighted combination of points
and segments. For that, we estimate the trajectory of a stereo camera in several
video sequences acquired in different environments.

3.C.5.1 Video Sequences

Tsukuba dataset

In this experiment we employ the New University of Tsukuba Stereo Dataset
[120] (Figure 3.2(a)), which contains 1800 stereo pairs from a synthetic labora-
tory scenario for different illumination conditions. The stereo camera performs
a 3D trajectory (about 50 meters length) over the laboratory scene, with sev-
eral changes in orientation. We compare the accuracy of our SVO system, with
the one that does not weight the measurements, and also check the advantages
of combining point and line features by representing the trajectories obtained
with one type of feature. Figures 3.2(b) and 3.2(c) depict both the top and
side view of the estimated trajectories with the ground truth. During most of
the sequence both estimations (the weighted and non-weighted) show a high
accuracy, however, the non-weighted method presents a small superiority since
this is a noise-free synthetic dataset, and therefore the uncertainty of the mea-
surements is almost negligible. In the final part of the scene there is a door
which induces a lateral drift into the non-weighted method, while the weighted
trajectory keeps smooth. The reason for that is an increase in the number of
bad measurements, whose negative effect in the quality of the estimation is
avoided thanks to the employment of the uncertainty and also the Pseudo-
Huber loss function in the process of detecting and removing the outliers. We
also observe a superior behavior of the line-based algorithm with respect to the
point-based, but obviously the solution which employs both features presents
a better performance since that combination provides more information to the
system which increases its accuracy.
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Figure 3.3: RPE distributions of the SVO system in the KITTI dataset sequences,
comparing the performance of the combined weighted (in blue) and non-weighted (in
red) methods, and also the point (in green) and line-based (in yellow) methods.

KITTI dataset

We also have used the KITTI benchmark [58], which provides accurate ground
truth based on a Velodyne laser scanner and a GPS localization system. The
stereo camera rig is formed by two gray-scale Point Grey Flear2 video cameras
separated with a baseline of 54 cm attached to the top of a car. As already
mentioned, the introduction of proper weights for the different features in the
optimization improves the accuracy of the estimated trajectory, since it lim-
its the influence of those landmarks with high uncertainty. For checking that,
we compare the results obtained with our strategy, that weights the features
with their uncertainty, with one that does not employ this information (non-
weighted approach). We also compare it with implementations that consider
only one type of feature: either points or line segments. Figure 3.3 plots the
distributions of the relative pose errors (RPE) [140] of the rotation and trans-
lation components between all camera pose increments for the test sequences
of the KITTI dataset. This chart confirms the superior performance of both
combined methods, which works well in most scenes while the behavior of
both point and line-based systems is irregular since they are more influenced
by the structure of each environment. In general, the point-based approach is
superior to the line-based in the KITTI dataset, since it is a highly textured
dataset where most lines found do not provide enough information to recover
the 6D pose. It also can be noticed a slight out-performance of the weighted
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Figure 3.4: Sequences extracted from the KITTI benchmark. (a) Line and point
correspondences from two different frames after filtering geometrically inconsistent
matches. (b) Top view of the KITTI-00 trajectory. The ground truth is represented
with black lines, the estimation weighted with the uncertainty with blue lines, and
the non-weighted estimation is plotted with red lines. (c) Top view of the KITTI-01
trajectory. (d) Top view of the KITTI-08 trajectory.

method. However, the major benefits of including the uncertainty in the op-
timization process can be observed visually in Figure 3.4. The top views of
the 3D estimated trajectories and the ground truth are represented in Figures
3.4(b) and 3.4(c)Figure 3.4(d), while a frame from the scene is plotted in Fig-
ure 3.4(a). We observe a good performance of the weighted method during the
three sequences, while the non-weighted algorithm suffers from a big error in
the rotation estimation of the sequence KITTI-01 that deviates the trajectory
from the ground truth. This is caused by a series of noisy measurements during
the medium part of the sequence, that induces the non-weighted method to a
poor estimation of the camera motion while the weighted methods, even those
which employ only one type of feature, are capable of inhibit the influence of
these bad landmarks thanks to the uncertainty weighting.
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3.C.5.2 Comparison in the KITTI Vision Benchmark

In this section we compare the performance of our SVO method with several
state-of-art algorithms in the evaluation sequences from the KITTI dataset.
A deeper comparison would test the performance of our method against those
in [150] and [90] in various environments, since both approaches employ line
segment features in the pose estimation, however, we have not found any public
implementation of them. Table 3.1 shows the results of several feature-based
VO algorithms, as reported in the KITTI benchmark website, which unlike
previous experiments it measures the accumulated trajectory error. Although
the performance of our method is slightly inferior in terms of relative trans-
lation errors, with an error of 3.26% against the 2.44% of VISO2S [59], and
relative rotation errors, with errors of 0.0095 deg/m in comparison with the
0.0077 deg/m of TGVO [86], its main advantage is the robust performance
in noisy and low-textured scenarios, when most point-based methods usually
fails [150].

Table 3.1: Comparison of several VO systems in the KITTI Vision Benchmark.

Method Tran.(%) Rot.(deg/m) Time(s)
Ours 3.26 0.0095 0.20
VISO2S [59] 2.44 0.0114 0.05
TGVO [86] 2.94 0.0077 0.06
VO3ptLBA [12] 3.13 0.0104 0.57
VISO2M+GP [59] [137] 7.46 0.0245 0.15
VISO2M [59] 11.94 0.0234 0.10

3.C.5.3 Processing Time

In this section we first compare the average execution times of both weighted
and non-weighted approaches. Table 3.2 shows the average computation times
and number of correspondences per frame, for the stereo sequences with dif-
ferent resolutions. It can be noticed a slight increment in the execution time
of the weighted approach due to the computation of the weights, which can
be perfectly assumed by most applications in mobile robotics. We also analyze
the influence of the image resolution in the processing time. First, we observe
that our stereo visual odometry system runs in average with frequencies of
12 Hz for 640×480 images, with a high number of correspondences processed
(an average number of 96 lines and 78 points). The proposed SVO system can
work with frequencies superior to 30 Hz when the resolution is set to lower
values (320×240). In that case, since the average number of detected line cor-
respondences decreases, the accuracy of the camera pose estimation may drop.
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Table 3.2: Average number of correspondences and processing times per frame.

Weighted Non-weighted
Dataset Resolution Lines Points Frequency Runtime Frequency Runtime
Tsukuba 320×240 45 40 31.40 Hz 31.85 ms 32.01 Hz 31.24 ms
Tsukuba 640×480 96 78 12.04 Hz 83.05 ms 12.38 Hz 80.76 ms
KITTI 613×185 54 60 21.47 Hz 46.57 ms 22.00 Hz 45.46 ms
KITTI 1226×370 75 188 4.54 Hz 220.03 ms 4.57 Hz 218.99 ms

3.C.6 Conclusions
In this paper we have introduced a novel stereo visual odometry system based
on points and line features, thus capable of working in different environments.
For effectively combining them we take into account the uncertainty of the
measurements, which improves the accuracy of the estimation. Besides, the
probabilistic distribution of the poses provided by our algorithm can be imple-
mented in any probabilistic framework commonly adopted in robotic applica-
tions. In addition, we have confirmed the theoretical results through a series
of real experiments in both synthetic and real environments, by estimating
the trajectory of different stereo cameras. Future work will focus on improving
the performance of our SVO system by introducing a different weighting that
will reduce the impact that bad measurements or mobile objects has in the
algorithm.
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Accurate Stereo Visual Odometry
with Gamma Distributions

Ruben Gomez-Ojeda, Francisco-Angel Moreno, and Javier Gonzalez-Jimenez

Abstract
Point-based stereo visual odometry systems typically estimate the
camera motion by minimizing a cost function of the projection
residuals between consecutive frames. Under some mild assump-
tions, such minimization is equivalent to maximizing the proba-
bility of the measured residuals given a certain pose change, for
which a suitable model of the error distribution (sensor model) be-
comes of capital importance in order to obtain accurate results.
This paper proposes a robust probabilistic model for projection er-
rors, based on real world data. For that, we argue that projection
distances follow Gamma distributions, and hence, the introduction
of these models in a probabilistic formulation of the motion estima-
tion process increases both precision and accuracy. Our approach
has been validated through a series of experiments with both syn-
thetic and real data, revealing an improvement in accuracy while
not increasing the computational burden.

3.D.1 Introduction
Most stereo visual odometry systems estimate camera motion through the
least-squares minimization [44,55] of a certain cost function C(ξ) of the resid-
uals ∆pi(ξ), defined as difference between the observations p′i of a set of
keypoints and their predictions p̂i(ξ) [60]:

∆pi(ξ) = p̂i(ξ)−p′i, (3.9)

where p̂i(ξ) is computed by back-projecting to 3D the observed i-th image key-
point detected in the previous frame, and then re-projecting it to the current
one, according to an estimation of the pose change ξ ∈ se(3) between them.
Typically, the cost function is derived from the maximization of the probability
of the pose change given the residuals, so that minimizing C(ξ) (i.e. estimating
the optimal pose change ξ∗) is equivalent to maximizing p(ξ |∆p). This is also
equivalent to maximizing their likelihood given a certain pose change, under
the assumptions of independent and equally distributed noise, and a uniform
prior distribution over the poses:

ξ∗ = argmax
ξ

p(ξ |∆p) = argmax
ξ

p(∆p |ξ). (3.10)
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Figure 3.5: Histogram of (left) the projection residuals in the x-coordinate for
the keypoints extracted from the sequence KITTI00, and the corresponding fitted
Student’s t-distribution (in green) and Gaussian distribution (in red), and (right)
the residual magnitudes of the keypoints extracted from all the training sequences in
the KITTI dataset. The real distribution can be described accurately with a Gamma
distribution.

In this context, finding a proper model of the residual distribution becomes
of capital importance as the results will be directly affected by its goodness
of fit. Furthermore, such model should consider the presence of not only noise
but also outliers.

Commonly, keypoint predictions (and consequently the projection residu-
als) are considered to be Gaussian-distributed, since the observed keypoints
are assumed to be corrupted by Gaussian noise that is propagated through lin-
ear approximations of the above-mentioned back-projection and re-projection
functions [33]. In practice, though, such approximations still present inaccu-
racies, as can be seen in Figure 3.5(a), which depicts the distribution of the
residuals in the image x-coordinate computed from real data (which is similar
to that of the y-coordinate). As a consequence, assuming a Gaussian distribu-
tion for p(∆p |ξ) leads to an unsuitable cost function whose minimization will
yield inaccurate results. In fact, according to the real distribution, a better
approach would be to model the residual in both the x and y image coordi-
nates by a Student’s t-distribution, whose shape is similar to the Gaussian one
but with heavier tails (refer again to Figure 3.5(a)). This approach has been
explored in [84] and applied to RGB-D cameras.

Nevertheless, we propose to employ the magnitude of the residual between
observations and predictions r= {ri(ξ) = ‖∆pi(ξ)‖}, instead of the projection
residual ∆p. Thus, we claim that modeling r as a Gamma distribution (i.e.
r∼ Γ(θ,α)) is a better option than modeling residuals as either a Gaussian or
a t-distribution, since the fitted model deviate less from the actual distribution



3.D. ACCURATE STEREO VISUAL ODOMETRY WITH GAMMA
DISTRIBUTIONS 39

it approximates (see Figure 3.5(b)). Following this, and the above-mentioned
assumptions, the optimization problem in (3.10) becomes:

ξ∗ = argmax
ξ

p(ξ |r) = argmax
ξ

p(r |ξ). (3.11)

The introduction of the Gamma distribution in the optimization process allows
us to derive a more suitable cost function that leads to better results than
assuming that residuals follow either a Gaussian or a t-distribution, as will be
proved with a series of experiments.

The two parameters of such Gamma distribution (namely shape and scale)
are estimated at each time-step from the actual histogram of all the involved
residual magnitudes, being necessary a minimum number of samples for the fit
to be representative. The on-line fitting procedure introduces little additional
cost to the optimization process while the benefits are two-fold: a more pre-
cise camera pose estimation and more robustness against outliers and noisy
measurements than the standard Gaussian-based approach. Even so, a very
large ratio of outliers may eventually degrade its performance, so the usage of
robustification methods is still advisable.

Our claim is supported by an extensive experimental validation with both
synthetic and real data, revealing its suitability for performing visual odome-
try, specially for stereo vision systems where observations in both images can
be employed. For that, our proposal has been integrated into our previous
stereo visual odometry (SVO) system presented in [62]. The results show sig-
nificant improvements in accuracy whilst incurring in a reduced computational
footprint. An illustrative video of our system and the SVO library source code
can be accessed in http://mapir.uma.es/rgomez.

3.D.2 Related Work
Visual-based motion estimation algorithms are strongly affected by the pres-
ence of noisy data and, specially, outliers, which do not follow the commonly
assumed Gaussian distribution for the residuals, hence eventually leading the
system to erroneous results. Traditional approaches to this problem, as the
one in [86], often rely on variants of RANSAC to deal with wrong measure-
ments by generating a solution which is in consensus with the majority of
the dataset. However, this technique has high computational requirements.
In [121], Person et al. presented a stereo visual odometry system which takes
advantage of monocular techniques, as they argue that those techniques are
more refined and robust than those of stereo systems. For that, they imple-
ment a delayed outlier identification procedure based on an essential matrix
RANSAC approach and robust iterative triangulation. Other approaches, as
the one in [53], integrate robust probabilistic filters to explicitly deal with out-
liers by estimating, for instance, the depth at feature locations over multiple
frames. Then, these depth filters are updated at each frame labeling as inliers
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those points with low uncertainty in depth, hence being introduced into the
map and subsequently employed to estimate the camera motion.

Finally, other approaches introduce some robust cost functions in the cam-
era motion estimation, hence obtaining appropriate weights that reduces the
impact of wrong measurements. A first group proposes several modifications
of the well-known extended Kalman filter (EKF) in order to increase the ro-
bustness of their systems against outliers and noisy measurements. In [143]
authors propose a robust EKF filter to deal with outliers in real-time, by
down-weighting the samples with more probability of being outliers, for which
they learn the system dynamics thus avoiding manual parameter tuning. In [10]
the previous approach was generalized and extended by introducing efficient
smoothing and filtering modifications for dealing with data corrupted with
non-Gaussian and heavy-tailed noise. The previous work was also extended
in [11], where authors proposed to introduce a structured variational approx-
imation with a more robust and flexible behavior, and yet introducing only a
little increment in the computational complexity. Another group of techniques
model directly the error distribution, and then perform a robust non-linear
least-squares minimization of these errors. In [84], Kerl et al. perform robust
odometry estimation for RGB-D cameras by minimizing the photometric error
between two consecutive frames. They argue that their dense RGB-D residuals
can be better explained with Student’s t-distributions, for which they derive a
probabilistic formulation including a robust sensor model based on real world
data. Recently, the work in [9] proposes a generic self-tuning M-estimator which
iteratively estimates the parameters of the residual distribution, thus removing
the necessity of manually set such parameters. However, this method needs to
compute the importance weights for each iteration of the least-squares prob-
lem, hence being computationally expensive for small problems as the one we
address here.

3.D.3 Distribution of the Projection Errors and Residuals
In this section, we empirically analyze the actual distributions of both the
projection residual p(∆p | ξ) and the residual magnitude p(r | ξ) for the case
of image keypoints. For this purpose, we detect and match ORB keypoints
along a sequence of stereo images provided by the KITTI collections of public
datasets [58]. Then, the observed keypoints are projected to the next frame
by applying the ground truth pose increment (also included in the dataset),
and both the residuals and their magnitude are computed. Finally, we adjust
different distributions to the data and evaluate their goodness of fit.

Regarding the projection residuals, we refer again to Figure 3.5(a), which
has been built from the sequence "00" of the KITTI dataset. As stated before,
it can be seen that the residual in the x image coordinate (and similarly for
the y coordinate) does not follow a Gaussian distribution. In fact, these data
can be more properly fitted by a t-distribution, as pointed out in [84]. So, we
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Table 3.3: Average goodness of fit with the K-S test for each distribution, with a
critical value of 0.0608 for α= 0.05

Proj. Residual Magnitude
Seq. Frames Feats Gaussian t-dist. Gamma
00 4540 777k 0.1455 0.0827 0.0474
01 1100 100k 0.2327 0.1447 0.0591
02 4660 1059k 0.1035 0.0638 0.0474
03 800 200k 0.1222 0.1518 0.0475
04 270 55k 0.0533 0.1199 0.0532
05 2760 478k 0.1023 0.0725 0.0492
06 1100 133k 0.1673 0.1256 0.0499
07 1100 199k 0.1790 0.1313 0.0464
08 4070 731k 0.1412 0.0916 0.0456
09 1590 273k 0.1429 0.0745 0.0481
10 1200 191k 0.1298 0.0534 0.0478

may consider to use this distribution to derive a suitable cost function that
takes into account a better approximation of the residual true distribution.
However, we claim that modeling the residual magnitude as a Gamma distri-
bution instead of the residual as either a Gaussian or a t-student represents a
more accurate fit of the modeled variable.

To prove this, we also analyze the distribution of the residual magnitude,
shown in Figure 3.5(b), where all the training sequences in the KITTI dataset
have been employed to build the histogram. It can be observed that a Gamma
distribution accurately describes the behavior of the magnitude, as it presents
a certain bias and also a heavy tail. The goodness of the three fits (i.e. Gaus-
sian and t-distribution for the projection residual and Gamma for the residual
magnitude) are evaluated through the Kolmogorov-Smirnov (K-S) test [138],
which measures the maximal difference between an empirical and a real dis-
tribution function. Thus, for each sequence, a subset of 103 keypoints has
been randomly selected from all the found features so that half of them are
employed to derive the distribution model, while the rest is used to perform
the test. Note that using separate datasets is mandatory in order to obtain
valid and distribution-free K-S test results [15], hence allowing the compar-
ison of different distributions. This experiment has been repeated 103 times
for each sequence, obtaining the average values shown in Table 3.3. In all se-
quences, the values below the test’s critical value have been highlighted (which
is 0.0608 for a significance value of α = 0.05). As expected, the t-distribution
approach approximates better the real distribution of the residual than the
Gaussian model. Nonetheless, the results also reveal that the Gamma distri-
bution represents a more accurate model for the residual magnitude than the
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t-distribution for the projection residual in most datasets. Then, modeling
their magnitude as a Gamma distribution (and consequently deriving a cost
function of the residual magnitude according to that) will lead to more accu-
rate results than employing a cost function of the projection residuals based
on the t-distribution.

Finally, it is important to remark that the number of samples (i.e. ob-
served keypoints) employed to fit the distributions influences the quality of
the approximation, as will be further discussed in Section 3.D.5.

3.D.4 Motion Estimation with the Gamma Distribution
In this section, we derive the equations to robustly recover the 6D pose change
ξ of a stereo camera using the Gamma-based approach to model the behavior of
the residual magnitude. For that, let us formally define the vector of residual
magnitudes r(ξ) = {ri(ξ)} that contains the projection distances of all the
individual observations, as defined in Section 3.D.1. Then, we aim to find the
camera motion ξ∗ ∈ se(3) that maximizes the posterior probability p(ξ | r) as
stated in equation (3.11), which we reproduce here for clarity:

ξ∗ = argmax
ξ

p(ξ |r) = argmax
ξ

p(r |ξ). (3.12)

Under the mild assumptions of ri(ξ) being independent, estimating (3.12) is
equivalent to minimizing the negative log-likelihood of the residual magnitude
(refer to [82,141] for further details):

ξ∗ = argmax
ξ

p(r |ξ) = argmin
ξ

{
−
∑
i

log p(ri |ξ)
}

(3.13)

Now, we model the magnitude r(ξ) with a Gamma distribution, i.e. r ∼
Γ(α,θ), whose probability density function (pdf) is given by:

f
(
x;α,θ

)
= 1

Γ(α)θαx
α−1e−x/θ for x > 0 and α,θ > 0 (3.14)

where α and θ are the so-called shape and scale parameters, respectively. Then,
the individual likelihood of the residual magnitude is proportional to:

p(ri |ξ)∝ rα−1
i e−ri/θ (3.15)

where we have dropped the constant terms that do not depend on ξ. Finally,
by introducing this model into (3.13), the estimator becomes:

ξ∗ = argmin
ξ

∑
i

{
ri/θ− (α−1)log ri

}
(3.16)
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which is equivalent to minimizing this cost function (following an Iteratively
Re-Weighted Least Squares (IRLS) approach):

ξ∗ = argmin
ξ

∑
i

w
(
ri(ξ)

)
r2
i (ξ) (3.17)

with w
(
ri(ξ)

)
being a weighting function defined by:

w
(
ri(ξ)

)
= ri/θ− (α−1)log ri

r2
i

. (3.18)

For the sake of computational complexity, we fit the Gamma distribution
at each time-step with the Method of Momentums, which employs the closed
form solutions for both the mean µ= αθ, and the variance of the distribution
σ2 = αθ2 (a complete comparative of several methods for fitting Gamma dis-
tributions can be found in [32]). However, using these parameters entails that
outliers also have influence in the estimation of both the mean and variance.
Therefore, it is desirable to employ robust methods to estimate the distribu-
tion parameters [73]. Thus, we employ the Median Absolute Deviation for the
standard deviation σ̂ and, subsequently, we estimate a robust mean µ̂ by only
considering the samples lying less than three times σ̂.

Once the Gamma distribution has been fitted, we derive the weighted cost
function in equation (3.17), which is optimized on the se(3) manifold through
the well-known Gauss-Newton equations (refer to [19] for a thorough analysis
on on-manifold optimizations). Finally, although our proposed cost function
presents some robustness against outliers due to the sublinear nature in the
residual magnitude of the weighting equation (3.18), it is important to re-
mark that a big amount of them still may degrade the resulting ego-motion
estimation. Therefore, we have implemented a variant of the ERODE outlier
detector [112] with the main difference of using a Cauchy distribution instead
of a Huber loss function and employed as an outlier-removal strategy for all
the tested approaches in the experiments.

3.D.5 Experimental Evaluation
This section presents two sets of experiments that analyze the effect in the
localization accuracy of introducing the proposed Gamma-based model in our
robust SVO system [62] in comparison to other approaches, namely: i) non-
weighted, ii) Gaussian-weighted, and iii) Student’s t-distributed weighted. For
the first approach, we perform a standard least-squares minimization of the
residuals without defining any weight for them. For the last two, we fit a
Gaussian or a t-distribution to the computed projection residuals, respectively,
and derive a cost function from equation (3.13), which will define the weights
for the individual residuals.
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Figure 3.6: Rotation (top) and translation (bottom) errors over a variable number
of observations, employing different cost functions: non-weighted (in red), Gaussian
weighted (in blue), Student’s t-distribution (in yellow), and Gamma distribution (in
green).

3.D.5.1 Experiments with synthetic data

In this first set of experiments, we have generated random stereo observations
(keypoints) in two consecutive frames, related by a random camera motion.
Thus, image keypoints are randomly spread all over the first stereo pair, by
simulating the point locations in the left image as well as their correspond-
ing disparities. Then, we project them to the current stereo frame according
to a random camera motion and, subsequently, Gaussian distributed noise is
added to each keypoint in both stereo frames. Finally, we compute the motion
estimation error in different scenarios.

In these experiments, we have simulated camera motions that follow a uni-
form distribution between ±1 m and ±3 deg, which emulates a camera moving
at similar speeds to those presented in [58]. The disparity of stereo points has
been set to follow a uniform distribution between [10,30] pixels, while the
camera intrinsic parameters are those specified for the KITTI dataset.

Impact of the Number of Observations

As discussed in Section 3.D.1, the number of keypoint correspondences has a
strong influence in the quality of the fitted Gamma distribution. To assess this,
we have evaluated our SVO approach for a variable number of observations
through the following Monte-Carlo simulation: for each weighting method and
number of observations, we estimate the camera pose change for 1000 differ-
ent configurations of both observations and camera motions, resulting in 1
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million simulations. The outliers ratio has been set to 20 % in this series of
experiments.

Figure 3.6 plots the results for the evaluated methods, where we have mea-
sured both rotation and translation average errors (along with 95% confidence
intervals, plotted as solid bars), specified in deg/m and % of the total length, re-
spectively, with respect to the true camera motion. As expected, both rotation
and translation errors show a slightly superior performance of the other three
methods in comparison to our approach for the lowest number of observations,
since there is not enough information to fit a Gamma distribution properly.
In contrast, this tendency is inverted as the number of observations increases,
revealing our method to clearly outperform the other three approaches in both
precision and accuracy, specially over 600 landmarks.

Impact of the Ratio of Outliers

Now, we study the impact of the number of outliers in the accuracy of the
camera motion estimation, keeping a fixed number of 200 keypoints. Again,
we have performed 1 million simulations for 1000 different configurations of
observations and camera motions, respectively.

The results are depicted in Figure 3.7, where it is shown a clearly better
performance of both Gamma and t-distribution against the non-weighted and
Gaussian-weighted approaches, since the first ones present a robust behav-
ior (as discussed in previous section). Gamma and t-distribution approaches
performs similarly in both translation and rotation errors for lower ratios of
outliers, although the Gamma-based sensor model provide more accurate re-
sults when increasing the number of outliers, since they can be easily detected
and removed from the residual magnitude distribution.

3.D.5.2 SVO Evaluation in the KITTI Benchmark

In this section, we assess the impact of the different approaches when per-
forming robust camera ego-motion estimation for the training sequences ("00"
to "10") from the KITTI dataset [58]. For that purpose, we have evaluated
the results by using again the same metrics employed in the KITTI Bench-
mark, which computes errors in both rotation and translation for different
subsequences lengths and speeds.

Performance at Different Sequence Lengths

First, we compute both rotation and translation errors relative to the distance
traversed, for all the different subsequence lengths considered in the dataset
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Figure 3.7: Rotation (top) and translation (bottom) errors over all sub-sequences
of a given length in the KITTI dataset, employing different cost functions: non-
weighted (in red), Gaussian weighted (in blue), Student’s t-distribution (in yellow),
and Gamma distribution (in green).
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Figure 3.8: Average rotation (top) and translation (bottom) errors over all sub-
sequences of a given length in the KITTI dataset, employing different cost functions:
non-weighted (in red circles), Gaussian weighted (in blue triangles), Student’s t-
distribution (in yellow squares), and Gamma distribution (in green stars).

(100m, 200m,..., 800m). The results show a significant improvement in both er-
rors for all the different subsequences with our method, which performs clearly
better than the rest of the approaches (refer to Figure 3.8).

Although the t-distributed weighting scheme also improves the ego-motion
estimation in comparison to the Gaussian-weighted approach, our proposal
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Figure 3.9: Average rotation (top) and translation (bottom) errors over all sub-
sequences of a given speed in the KITTI dataset, for the different cost functions
considered.

yields better results since it describes more accurately the actual nature of
the residual magnitude distribution. Moreover, it can be seen that the relative
improvement of our approach, in comparison with the rest, grows as the path
length increases. This is caused, in part, by the good performance obtained
regarding to rotations, since high errors in rotation deviate the absolute tra-
jectory from the ground truth, hence increasing absolute translational errors.

Performance at Different Speeds

In this experiment, we analyze the impact of the different weighting functions
when performing visual odometry for all the speeds considered in the KITTI
Benchmark (4m/s,6m/s,...,24m/s), by computing again the average rotation
and translation errors (refer to Figure 3.9). It can be seen that our proposal
clearly presents a superior performance for all the considered speeds, specially
over 60km/h. This is caused by an increasing number of wrong measurements
and outliers introduced to the system when the camera is traveling at high
speeds, due to difficulties in feature tracking (those sequences usually cor-
respond to low-textured highway scenes). In these situations, our proposed
Gamma-based model performs better than the rest of the methods since it
describes the actual nature of the residual magnitude distribution, so that
outliers and wrong measurements are down-weighted properly, as claimed in
this paper.
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Table 3.4: Average optimization time per frame for a given number of observations.

#Observations nWeight. Gauss. t-dist. Gamma
N ≤ 200 0.911 ms 1.034 ms 1.134 ms 1.113 ms

200 < N ≤ 300 1.399 ms 1.625 ms 1.783 ms 1.748 ms
300 < N ≤ 400 1.872 ms 2.212 ms 2.420 ms 2.378 ms
400 < N ≤ 500 2.329 ms 2.787 ms 3.038 ms 2.991 ms

N > 500 2.962 ms 3.590 ms 3.899 ms 3.854 ms

Computational Time

Finally, we analyze the computation time employed by each algorithm in the
optimization process, for all the frames in the training set of the KITTI dataset.
Experiments have been conducted on a single core of an Intel(R) Core(TM)
i7-3770 CPU @ 3.40GHz processor with 4GB RAM. Table 3.4 contains the
average time per frame employed for each algorithm, for a given number of
observations.

As expected, the non-weighted approach has the lowest computational
footprint, as it does not involve any weight estimation. On the other hand,
although the Gaussian weighted approach requires less computational cost
than the Gamma-weighted and t-distributed weighted approaches, it performs
similar to the non-weighted approach (as demonstrated in the previous ex-
periments), thus not justifying its application. Finally, our proposal slightly
outperforms the t-distributed weighting scheme, with a smaller computational
burden, while increasing the accuracy in visual odometry estimation. Hence,
it is interesting to consider the inclusion of the proposed Gamma-based model
in robust systems with higher requirements in accuracy than in computational
time.

3.D.6 Conclusions
In this paper we have proposed a Gamma-based model for the distribution of
the projection residual magnitude in keypoint-based stereo-visual odometry.
This approach is employed to derive a proper cost function of the residual
magnitude which accurately weights each individual observation according to
their true distribution. Its minimization leads to a robust ego-motion estima-
tion that outperforms other weighting approaches that model projection errors
as Gaussian or Student’s t-distributions. Moreover, our proposal also presents
robustness against outliers, since the model reproduces the tail behavior of
the residual magnitude real distribution so that outliers are properly down-
weighted in the optimization process. The claimed features have been proved
with extensive visual odometry experiments with both synthetic and real data,
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where we compare our approach with the non-weighted, Gaussian-distributed,
and t-distributed approaches.
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PL-SVO: Semi-Direct Monocular
Visual Odometry by Combining

Points and Line Segments
Ruben Gomez-Ojeda, Jesus Briales, and Javier Gonzalez-Jimenez

Abstract
Most approaches to visual odometry estimates the camera motion
based on point features, consequently, their performance deterio-
rates in low-textured scenes where it is difficult to find a reliable
set of them. This paper extends a popular semi-direct approach to
monocular visual odometry known as SVO [53] to work with line
segments, hence obtaining a more robust system capable of deal-
ing with both textured and structured environments. The proposed
odometry system allows for the fast tracking of line segments since
it eliminates the necessity of continuously extracting and match-
ing features between subsequent frames. The method, of course,
has a higher computational burden than the original SVO, but it
still runs with frequencies of 60Hz on a personal computer while
performing robustly in a wider variety of scenarios.

3.E.1 Introduction
Visual odometry (VO) is gaining importance in robotic applications, such as
unmanned aerial vehicles (UAVs) or autonomous cars, as an essential part of
the navigation systems. Solutions for the VO problem has been addressed em-
ploying different sensors, such as monocular or stereo cameras [87] [47] [121],
RGB-D cameras [84] [76], or a combination of any of them with an Inertial
Measurement Unit (IMU) [52]. The traditional approach consist of the detec-
tion and matching of point features between frames, and then, the estimation
of the camera motion through least-squares minimization of the reprojection
errors between the observed and projected points [128]. In this context, the
performance of such approaches deteriorates in low textured scenarios as de-
picted in Figure 3.10, where it is difficult to find a large or well-distributed set
of image features. In contrast, line segments are usually abundant in human-
made scenarios, which are characterized by regular structures rich in edges and
linear shapes. Dealing with line segments in images it is not as straightforward
as points, since they are difficult to represent [18] and also require high compu-
tational burden for the detection and matching tasks thus only a few solutions
have been proposed [29] [90], barely reaching real-time specifications. More-
over, edge-based algorithms have been also used for both solving the problem



52 CHAPTER 3. ROBUSTNESS TO LOW-TEXTURED ENVIRONMENTS

Figure 3.10: In low-textured environments, point-based algorithms usually fail due
to difficulties in founding a large number of features, in contrast, line segments are
usually abundant.

of tracking [69] [144] [125], and estimating the camera motion [92]. However,
these methods require a rather costly direct alignment which makes them less
suitable to real time, and also limits their application to narrow baseline esti-
mations. To the best of our knowledge, this paper proposes the first real-time
approach to Monocular Visual Odometry (MVO) that integrates both point
and line segment features, and hence it is capable of working robustly in both
structured and textured scenarios. The source code of the developed C++
PL-SVO library and illustrative videos of this proposal can be found here:
http://mapir.isa.uma.es

3.E.1.1 Related Work

Visual odometry algorithms can be divided into two main groups. The first one,
known as feature-based, extract a set of image features (traditionally points)
and track them along the successive frames. Then, they estimate the pose
by minimizing the projection errors between the correspondent observed fea-
tures and those projected from different frames. Literature offers us several
point-based approaches to the odometry problem, such as PTAM [88], where
authors report a fast SLAM system capable of performing real-time parallel
tracking and mapping over thousands of landmarks. In contrast, the problem
of motion estimation with line features has been less explored due to their
inherent difficulties, specially to monocular odometry. In [150] authors extend
the Iterative Closest Point (ICP) approach [98] to the case of stereo odometry
with line segments, where they substitute the computation of costly descrip-
tors in a one-to-multiple line matching approach. In our previous work [62], we
present a stereo visual odometry system based on both point and line segment
features. The influence of each feature is weighted with the inverse of their
covariance matrix, which is obtained by uncertainty propagation techniques
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over the reprojection functions. However, this work still relies on traditional
feature detection and matching, and thus it has a high computational cost.

The other group, known as direct approaches, estimates the camera motion
by minimizing the photometric errors between successive frames at several im-
age locations. In [118] authors propose a direct approach, known as DTAM,
where they estimate the camera pose by direct alignment of the complete inten-
sity image between each keyframe, employing a dense depth-map estimation.
However, this method requires GPU parallelization since it process the whole
image. For dealing with the high computational requirements of direct meth-
ods, a novel monocular technique is proposed in [51], where authors estimate
the camera motion in a semi-dense approach, thus reaching real-time perfor-
mance on a CPU. They continuously estimate and track a semi-dense inverse
depth-map for regions with a sufficient image gradient, thus only exploiting
those areas which introduce valid information to the system. Then, they esti-
mate the camera motion by minimizing the photometric error over the regions
of interest, hence combining the good properties of direct algorithms with a
sparse approach that allows for fast processing.

3.E.1.2 Contributions

Point features are less abundant in low-textured and structured scenarios, and
hence, the robustness and accuracy of point-based visual odometry algorithm
dramatically decreases. On the other hand, detecting and matching line seg-
ments demands high computational resources, which is the main reason of the
lack of real-time approaches to visual odometry using these features. In this
work, we extend the semi-direct approach in [53] to the case of line segments,
which performs fast feature tracking as an implicit result of a sparse-direct
motion estimation. Therefore, we take advantage of this sparse structure to
eliminate costly segment detection (we only detect them when a new keyframe
is introduced to the framework), and descriptor computation, while maintain-
ing the good properties of line segments. As a result, we contribute with a
fast monocular odometry system capable of working robustly in low textured
scenarios thanks to the combination of the information of both points and seg-
ment features. In the following we describe the proposed system, and validate
the claimed features with experiments in different environments.

3.E.2 System Overview
The proposed system can be understood as an extension of the semi-direct
framework in [53], that not only consider points but also segment features in
the scene and introduce both in the pipeline. This is a non-trivial extension,
since line segments present more complexity than point features from a geo-
metrical point of view. In practice, this makes that certain image operations
which are almost trivial for points become more computationally cumbersome
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Figure 3.11: SVO framework, extracted from [53]. Our work extends the concept
of feature so that both points and segments in the scene are considered for every
step in the pipeline.

for the case of segments. Hence, we need to perform several approximations
and take some well-founded heuristic in order to save computational resources.
These will be seen in higher detail in the Sections 3.E.3 and 3.E.4.

For the sake of completeness, we briefly review every stage of the semi-direct
framework [53], depicted in Figure 3.11 while showing how the partnering
of this semi-direct approach and the use segment features becomes mutually
beneficial. The semi-direct approach is divided into two parallel threads, one for
estimating the camera motion and another one for mapping the environment.

3.E.2.1 Motion Estimation

In the motion thread, an initial motion estimate is performed between con-
secutive frames by using a sparse direct alignment approach (see Figure 3.12),
which minimizes the photometric error between patches using the 3D warping
provided by the known 3D features. This allows for the fast tracking of features
between frames as a result of the semi-direct motion estimation, which elim-
inates the need of performing frame-to-frame detection and matching. This,
which is fairly advantageous for point features, becomes extremely beneficial
for segments since they are considerably more computationally expensive. In-
stead, features are only detected when a new keyframe is inserted, so that the
overall cost of the LSD segments detection [147] becomes affordable. Further-
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more, by reducing the dimension of the optimization problem to the estimation
of the pose only epipolar geometry is automatically fulfilled and we do not have
to take care of outlier matches.

Then, the second step (see Figure 3.13) of the motion thread is to refine the
feature projections given by the transformation estimate from direct alignment,
thus violating the epipolar constraints to reduce the drift of the camera. The
feature refinement is performed by taking as reference patch the one with the
closest viewpoint. This approach, again, is very beneficial for segments since
it limits large observations baselines during the tracking of the segments. In
consequence, it alleviates well-known issues of line segments such as endpoints
repeatability, occlusions or deformation of the segments due to change of view
[90]. Finally, both the camera motion and the map structure are refined by
minimizing the reprojection errors.

At this point, the matching with far features is fully solved thanks to
the intermediate continuous tracking and we can apply specific feature-based
refinement approaches that behave quite well for segment features, as depicted
in Figure 3.14.

To sum up, we see that the introduction of segments in a semi-direct frame-
work [53] can be done much more seamlessly that for other more traditional
approaches, since the preliminary direct steps alleviate most of the downsides
that have historically prevented the use of segments in Visual Odometry. Oth-
erwise stated, the motion as well as the mapping are enriched by the use of
segments without incurring in a significant overhead of the overall system.

Concurrently, the map thread estimates the depth of 2D features with a
probabilistic Bayesian filter, which is initialized when a keyframe is inserted
to the pipeline. The depth filters are initialized with a high uncertainty, but
they converge to the actual values in a few iterations and are then inserted to
the map, becoming useful for motion estimation. In the following, we describe
in detail each stage of the algorithm, and then validate it with experiments in
real environments.

3.E.3 Semi-Direct Monocular Visual Odometry
Let Ck−1 and Ck be the coordinate systems of a calibrated camera at two con-
secutive poses, which are related by the relative pose transformationTk−1,k(ξ)∈
SE(3), where ξ ∈ se(3) is the 6-vector of coordinates in the Lie algebra se(3).
The problem we face is that of estimating the camera pose along a sequence
of frames, for which we denote Tk,w as the camera pose with respect to the
world’s reference system in the k-th timestep. For that, let us denote as Ik
the intensity image in the k-th frame, and Ω as the image domain. We will
denote the point features as x, and its correspondent depth as dx. In the case
of line segments, we will employ both the endpoints, denoted by p and q re-
spectively, and the line equation as l. The 3D point back-projected from the
image at timestep k is denoted as Xk, and can be obtained through the inverse
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Figure 3.12: The relative pose between the current and the previous frame param-
eterizes the position of the reprojected points in the new image. We perform (sparse)
image alignment to find the pose that minimizes the photometric difference between
image patches corresponding to the same 3D point (blue squares). For the segments
points are homogeneously sampled between the 3D endpoints. Note, in all figures,
the parameters to optimize are drawn in red and the optimization cost is highlighted
in blue. This figure has been adapted from [53].

projection function π−1, i.e. Xk = π−1(x,dx). The projection of a 3D point
in the image domain is obtained through the camera projection model π, so
that x = π(Xk). In the following, we will extend the steps of SVO algorithm
to the case of line segments.
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Figure 3.13: The 2D position of each point is optimized individually to minimize
the photometric error in its patch. For the segments the end points are similarly
optimized. This alleviates errors propagated from map and camera pose estimation.
This figure was also adapted from [53].

3.E.3.1 Sparse Model-based Image Alignment

The camera motion between two consecutive frames, Tk−1,k(ξ), is first esti-
mated through direct image alignment of the sparse features tracked along the
frames. Unlike the point-based approach, we cannot directly align the whole
region occupied by line segment between two frames, since it would be compu-
tationally expensive. For that, we only minimize the image residuals between
some patches equally distributed all along the line segment, as depicted in
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Figure 3.14: In the last motion estimation step, the camera pose and the structure
(3D points and segments) are optimized to minimize the reprojection error that has
been established during the previous feature-alignment step. Similarly to the previous
ones, this figure has been adapted from [53].

Figure 3.12. Let us define L as the image region for which the depth of the
endpoints is known at previous time step k− 1, and for which the endpoints
p and q are visible in the image domain at the current timestep Ωk:

L :=
{
p,q,wn | p,q ∈ Lk−1

∧ π
(
T(ξ) ·π−1(p,dp)

)
∈Ωk

∧ π
(
T(ξ) ·π−1(q,dq)

)
∈Ωk

}
(3.19)

where wn, with m = 2, ...,Nl− 1 referring to the intermediate points defined
homogeneously along the line segments.

Then, the intensity residual for a line segment δIl is defined as the photo-
metric difference between pixels of the same 3D line segment point, which is:

δIl(ξ, l) = 1
Nl

Nl∑
n=0

∣∣∣Ik(π(T(ξ) ·wn
))
− Ik−1(wn)

∣∣∣ (3.20)

where in the case of n = 0 and n = Nl, the point wn refers to the endpoints
p and q respectively. Then, we estimate the optimal pose increment ξ∗k−1,k
that minimizes the photometric error of all patches, for both point and line
segment features:

ξ∗k−1,k = argmin
ξ

{∑
i∈P
‖δIp(ξ,xi)‖2 +

∑
j∈L
‖δIl(ξ, lj)‖2

}
. (3.21)

Similarly to [53], we employ inverse compositional formulation proposed in
[17], for speeding up the minimization process. In this case, we seek for the
linearized Jacobian of the line segment residuals, which can be expressed as
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the summatory of the individual point Jacobians for each intermediate point
wn sampled:

∂δIl(ξ, lj)
∂ξ

∣∣∣∣∣
ξ=0

= 1
Nl

Nl∑
m=0

∂δIp(ξ,wn)
∂ξ

∣∣∣∣∣
ξ=0

(3.22)

whose expression can be obtained of [53]. Then, we estimate the optimal pose
by robust Gauss-Newton minimization of the above-mentioned cost function in
(3.21). Notice that this formulation allows for the fast tracking of line segments
as depicted in Figure 3.10, which is an open problem due to the high compu-
tational burden employed with traditional feature-based approaches [62].

3.E.3.2 Individual Feature Alignment

Similarly to [53], we individually refine the 2D positions of each feature by
minimizing the photometric error between the patch in the current image, and
the projection of all the 3D observations of this feature, which can be solved
by employing Lucas-Kanade algorithm [17]. In the case of line segments, we
only need to refine the position of the 2D endpoints (see Figure 3.13), which
defines the line equation employed in the estimation of the projection errors:

w′j = argmin
w′

j

∥∥Ik(w′j)− Ir(Aj ·wj)
∥∥2
, ∀j (3.23)

where w′j is the 2D estimation of the position of the feature in the current
frame (w′j stands equally for both endpoints), and wj is the position of the
feature in the reference frame r. This is a bold assumption in the case of
line segments, since their endpoints are considerably less descriptive than key-
points. For dealing with this, we also perform a robust optimization of (3.23),
and then we relax this assumption by refining the 3D position of the endpoints.
Notice that it is necessary to employ an affine warping Aj in this step, since
the closest key frame for which we project the feature is usually farther, and
the size of the patch is bigger than in the previous step.

3.E.3.3 Pose and Structure Refinement

After optimizing individually the position of each feature in the image by
skipping the epipolar constraints, the camera pose obtained in (3.21) must be
further refined by minimizing the reprojection errors between the 3D features
and the corresponding 2D feature positions in the image (see Figure 3.14). For
that, we consider reprojection errors between the 3D features and the camera
pose Tk,w, both in world’s coordinate frame, since it considerably reduces the
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drift of the estimated trajectory. The cost function when employing both type
of features is:

ξ∗k,w = argmin
ξ

{∑
i∈P

∥∥rp(Tk,w,Xi,k)
∥∥2

+
∑
j∈L

∥∥rl(Tk,w,Pj,k,Qj,k, lj)
∥∥2
}

(3.24)

where rp stands for the projection errors in the case of point features, and rl
is the projection error of line segments:

rl(Tk,w,Pj,k,Qj,k, lj) =
[
lj ·π

(
Tk,w ·Pj,k)

lj ·π
(
Tk,w ·Qj,k)

]
. (3.25)

This is solved iteratively with Gauss-Newton, for which we need to include
(3.24) in a robustified framework, for which we employ the Cauchy loss func-
tion:

ρ(s) = log(1 +s). (3.26)

The optimization consist of three steps: i) we first estimate the camera motion
with all the samples ii) we filter out the outliers, which are considered as
those features whose residual error lies above two times the robust standard
deviation of those errors iii) we fastly refine the camera pose by optimizing
with the inliers subset. Finally, we refine the position of the 3D point and line
segment features through minimization of the reprojection errors.

3.E.4 Mapping
The map thread recursively estimates the 3D position of the image features for
which their depth is still unknown. For that, authors of [53] implement a depth
filter based in a Bayesian framework, for which they model the depth of the
feature with a Gaussian + Uniform mixture model distribution [146]. In the
case of line segments we need to estimate the 3D position of the endpoints, since
they are employed for both describe the feature and estimating the reprojection
errors. However, the endpoints of line segments obtained through detectors
such as LSD [147] are not repetitive, which is a limitation to employ them in
monocular visual odometry. On the other hand, one of the advantages of the
fast tracking employed here is that we explicitly seek for the exact same line
segment in the successive frames, so that we continuously track the position
of the endpoints. This allows for the introduction of the endpoints in a similar
Bayesian framework, where the distribution of both endpoints is estimated
when inserting new observations. As a result, we obtain meaningful maps which
can be used to extract useful information about geometry of the scene.
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(a) Living room (b) Office

Figure 3.15: Sparse features tracked by PL-SVO in two frames extracted from the
ICL-NUIM dataset [68], where we can observe the importance of introducing line
segments in such low-textured scenarios.

3.E.5 Experimental Validation
In this section, we illustrate the benefits of including line segments in motion
estimation, specially when working in low-textured environments. For that, we
estimate the trajectory of a monocular camera in several sequences, from both
synthetic and real datasets. All experiments have been conducted on an Intel
Core i5-6600 CPU @ 3.30GHz without GPU parallelization.

3.E.5.1 Evaluation in ICL-NUIM Dataset [68]

First, we test our algorithm in the Imperial College London and National
University of Ireland Maynooth (ICL-NUIM) dataset [68]. This dataset consist
of two different synthetic environments, one in an office and the other one in
a living room, for which several sequences can be generated and rendered (see
Figure 3.15). Table 3.6 compares the performance of the proposed algorithm
against SVO [53] for the sequences lrkt-2 and ofkt-3. For the sake of fairness,
we have employed our current implementation of PL-SVO without introducing
line segments to the framework as baseline of comparison. Results show a
superior performance of PL-SVO in the first sequence lrkt-2, which is capable
of estimating the camera motion along the whole trajectory (the rest of the
sequence is employed for initialization), while the point-based approach only
tracks the 34% of the sequence. In the second sequence, ofkt-3, SVO shows a
slight superiority in terms of accuracy. However, it is worth noticing that it is
only capable of tracking a 57%, and hence, it is not affected by higher errors
introduced in the difficult parts of the sequence.
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Table 3.5: Comparison against SVO [53] in the ICL-NUIM dataset by measuring
relative pose errors (RPE) per second.

% Sequence RMSE (m/s) Median (m/s) RMSE (deg/s) Median (deg/s)

lrkt-2 SVO 34.32 0.0085 0.0078 0.0615 0.0491
PL-SVO 91.93 0.0076 0.0069 0.1023 0.0502

ofkt-3 SVO 57.82 0.0053 0.0041 0.1011 0.0547
PL-SVO 96.85 0.0059 0.0053 0.0997 0.0532

(a) Textured scene (b) Low-textured scene

Figure 3.16: Sparse features tracked by PL-SVO in two different frames of the
TUM dataset [68].

3.E.5.2 Evaluation in TUM Dataset [140]

We also evaluate the performance of both SVO and PL-SVO approaches in
the TUM Dataset [140], which consist of several sequences recorded with an
RGB-D camera in different environments, as depicted in Figure 3.16. Table

Table 3.6: Comparison against SVO [53] in the TUM dataset by measuring the
RPE per second.

% Sequence RMSE (m/s) Median (m/s) RMSE (deg/s) Median (deg/s)

fr1-floor SVO 54.47 0.4112 0.0528 21.0040 2.1970
PL-SVO 77.11 0.0806 0.0742 2.2658 1.1294

fr1-xyz SVO 95.10 0.1780 0.1251 11.8003 8.8365
PL-SVO 95.10 0.1089 0.0873 7.6256 5.9863

fr2-desk SVO 96.23 0.0908 0.0828 0.9912 0.7675
PL-SVO 96.23 0.0693 0.0644 0.9040 0.7275

fr2-rpy SVO 98.39 0.0155 0.0100 0.6424 0.5037
PL-SVO 98.39 0.0157 0.0107 0.6501 0.5200

fr2-xyz SVO 98.56 0.0213 0.0183 0.6462 0.5449
PL-SVO 98.56 0.0209 0.0178 0.6337 0.4845

fr3-longoffice SVO 95.35 0.1794 0.1793 1.1132 0.6138
PL-SVO 95.35 0.1660 0.1637 1.3118 0.5161
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3.5 contains the results for the considered sequences from the TUM dataset. In
general, we observe the superior performance of PL-SVO in most sequences,
hence confirming its robust behavior in multiple environments. However, the
accuracy of motion estimation considerably decreases in this dataset, where
monocular techniques are severely affected by motion blur and other negative
effects resulting from the rolling shutter in RGB-D sensors.

3.E.5.3 Processing Time

Finally, we analyze the impact of introducing line segments to the framework
in the processing time. Table 3.7 shows the average times employed in the dif-
ferent stages of the algorithms. As one may first think, the computational cost
necessary for performing both sparse image and feature alignment increases
considerably when including line segments, where the runtime of each stage
is augmented in 4 ms. However, our algorithm still performs in real-time with
frequencies of almost 60 Hz, depending on the type of scene.

Table 3.7: Mean average times in each stage of the algorithm for both SVO and
PL-SVO algorithms.

SVO [53] PL-SVO
Pyramid creation 0.26 ms 0.26 ms
Sparse Image Alignment 2.60 ms 6.58 ms
Feature Alignment 4.13 ms 8.61 ms
Pose and Structure Refinement 0.35 ms 0.76 ms
Total Motion Estimation: 8.60 ms 17.83 ms

3.E.6 Conclusions
In this paper we have proposed a novel approach to monocular odometry by
extending the SVO algorithm proposed by Forster et al. in [53] to the case
of line segments. Hence, we obtain a more robust system capable of dealing
with untextured environments, where performance of point-based approaches
usually deteriorates due to the difficulties in finding a well-distributed set of
points. The semi-dense approach allows for the fast tracking of line segments,
thus eliminating the necessity of detecting and matching whenever a new frame
is introduced, which is one of the main limitations of employing this type of
features. We validate the claimed features in a series of experiments in both
synthetic and real datasets, confirming the robust behavior of this proposal.
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Abstract
Traditional approaches to stereo visual SLAM rely on point fea-
tures to estimate the camera trajectory and build a map of the envi-
ronment. In low-textured environments, though, it is often difficult
to find a sufficient number of reliable point features and, as a con-
sequence, the performance of such algorithms degrades. This paper
proposes PL-SLAM, a stereo visual SLAM system that combines
both points and line segments to work robustly in a wider variety
of scenarios, particularly in those where point features are scarce or
not well-distributed in the image. PL-SLAM leverages both points
and line segments at all the instances of the process: visual odom-
etry, keyframe selection, bundle adjustment, etc. We contribute
also with a loop closure procedure through a novel bag-of-words
approach that exploits the combined descriptive power of the two
kinds of features. Additionally, the resulting map is richer and more
diverse in 3D elements, which can be exploited to infer valuable,
high-level scene structures like planes, empty spaces, ground plane,
etc. (not addressed in this work). Our proposal has been tested
with several popular datasets (such as EuRoC or KITTI), and is
compared to state of the art methods like ORB-SLAM2, reveal-
ing a more robust performance in most of the experiments, while
still running in real-time. An open source version of the PL-SLAM
C++ code has been released for the benefit of the community.

3.F.1 Introduction
In recent years, visual Simultaneous Localization And Mapping (SLAM) has
been firmly progressing towards the degree of reliability required for fully au-
tonomous vehicles: mobile robots, self-driving cars or Unmanned Aerial Vehi-
cles (UAVs). In a nutshell, the SLAM problem consists of the estimation of the
vehicle trajectory given as a set of poses (position and orientation), while si-
multaneously building a map of the environment. Apart from self-localization,
a map becomes useful for obstacle avoidance, object recognition, task planning,
etc. [44].
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(a) lt-easy (b) euroc/V2-01-easy

(c) euroc/V1-01-easy (d) Map from (c)

Figure 3.17: Low-textured environments are challenging for feature-based SLAM
systems based on traditional keypoints. In contrast, line segments are usually com-
mon in human-made environments, and apart from an improved camera localization,
the built maps are richer as they are populated with more meaningful elements (3D
line-segments).

As a first-level classification, SLAM systems can be divided into topological
(e.g. [35, 107–109]) and metric approaches. In this paper, we focus on the
latter, which take into account the geometric information of the environment
and build a physically meaningful map of it [89, 113]. These approaches can
be further categorized into direct and feature-based systems.

Direct methods estimate the camera motion by minimizing the photometric
errors between consecutive frames under the assumption of constant bright-
ness along the local parts of the sequences (examples of this approach can be
found elsewhere [50, 54, 118]). While this group of techniques has the advan-
tage of working directly with the input images regardless of any intermediate
representation, they are very sensitive to brightness changes (this phenomena
was addressed in [49]) and constrained to narrow baseline motions. In con-
trast, feature-based methods employ an indirect representation of the images,
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typically in the form of point features, that are tracked along the successive
frames and then employed to recover the pose by minimizing the projection
errors [115,128].

It is noticeable that the performance of any of the above-mentioned ap-
proaches usually decreases in low-textured environments in which it is typi-
cally difficult to find a large set of keypoint features. The effect in such cases
is an accuracy impoverishment and, occasionally, the complete failure of the
system. Many of such low-textured environments, however, contain planar el-
ements that are rich in linear shapes, so it would be possible to extract line
segments from them. We claim that these two types of features (keypoints
and segments) complement each other and its combination leads to a more
versatile, robust and stable SLAM system. Furthermore, the resulting maps
comprising both 3D points and line segments provide more structural infor-
mation from the environment than point-only maps, as can be seen in the
example shown in Figure 3.17(d). Thus, applications that perform high-level
tasks such as place recognition, semantic mapping or task planning, among
others, can significantly benefit from the richer information that can be in-
ferred from them.

These benefits, though, come at the expense of a higher computational
burden in both detecting and matching line-segments in images [18], and also
in dealing effectively with segment-specific problems like partial occlusions,
line disconnection, etc., which complicate feature tracking and matching as
well as the residual computation for the map and pose optimization. Such
hurdles are the reason why the number of solutions that have been proposed
in the literature to SLAM or Structure from Motion (SfM) with line features
(e.g. [22, 72, 106, 136, 153]) is so limited. Besides, the few solutions we have
found only perform robustly in highly structured environments while showing
unreliable results when applied to more realistic ones such as those recorded in
the EuRoC or KITTI datasets. In this work, we address the segment-specific
tracking and matching issues by discarding outliers through the comparison
of the length and the orientation of the line features, while, for the residual
computation, we represent segments in the map by their endpoints coordinates.
Thus, the residuals between the observed segments and their corresponding
lines in the map are computed by the distance between the projections of
those endpoints on the image plane and the infinite lines associated to the
observed ones. This way, we are able to build a consistent cost function that
seamlessly encompasses both point and line features.

These two kinds of features are also employed to robustly detect loop clo-
sures during camera navigation, following a new bag-of-words approach that
combines the advantages of using each of them to perform place recognition. In
summary, we propose a novel and versatile stereo visual SLAM system, coined
PL-SLAM, which builds upon our previous Visual Odometry (VO) approach
presented in [62], and combines both point and line segment features to per-
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form real-time camera localization and mapping. The main contributions of
this work are:

◦ The first open source stereo SLAM system that employs point and line
segment features in real time, hence being capable of operating robustly in
low-textured environments where traditional point-only approaches tend to
fail. Because of the consideration of both kinds of features, our proposal also
produces rich geometrical maps.

◦ A new implementation of the bundle adjustment (BA) process that seam-
lessly accounts for both kinds of features while refining the poses of the
keyframes.

◦ An extension of the bag-of-words approach presented in [57] that takes into
account the description of both points and line segments to improve the
loop-closure process.

A set of illustrative videos showing the performance of proposed system and
an open source version of the developed C++ PL-SLAM library are publicly
available at http://mapir.uma.es and https://github.com/rubengooj/pl-slam.

3.F.2 Related Work
Feature-based SLAM is traditionally addressed by tracking keypoints along
successive frames and then minimizing some error function (typically based
on re-projection errors) to simultaneously estimate the poses and the map
[25]. Among the most successful proposals, we can highlight FastSLAM [110],
PTAM [88] [87], SVO [53] [54], and, more recently, ORB-SLAM [115], which
relies on a fast and continuous tracking of ORB features [126], and a local
bundle adjustment step with the continuous observations of the point features.
All these approaches, though, tend to fail or reduce their accuracy in low-
textured scenarios where the lack of repeatable and reliable features usually
hinders the feature tracking process. In the following, we review the state of the
art of visual SLAM systems based on alternative image features to keypoints:
i.e. edgelets, lines, or line segments.

One of the remarkable approaches that employs line features is the one
in [134], where the authors proposed an algorithm to integrate them into a
monocular Extended Kalman Filter SLAM system (EKF-SLAM). In the cited
paper, the line detection relies on an hypothesize-and-test method that con-
nects several nearby keypoints to achieve real-time performance. Other works
employ edge landmarks as features in monocular SLAM, as the one reported
in [47], which does not only include the information of the local planar patch
as in the case of keypoints, but also considers local edge segments, hence intro-
ducing new valuable information as the orientation of the so-called edgelets. In
that work they derive suitable models for those kinds of features and use them
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within a particle-filter SLAM system, achieving nearly real-time performance.
More recently, authors in [54] also introduced edgelets in combination with
intensity corners in order to improve robustness in environments with little or
high-frequency texture.

A different approach, known as model-based, incorporates prior information
about the orientation of the landmarks derived from line segments. Particu-
larly, the method in [152] presents a monocular 2D SLAM system that employs
vertical and horizontal lines on the floor as features for both motion and map
estimation. For that, they propose two different parameterizations for the ver-
tical and the horizontal lines: vertical lines are represented as 2D points on the
floor plane (placed at the intersection point between the line and such plane),
while horizontal lines are represented by their two end-points placed on the
floor. Finally, the proposed model is incorporated into an EKF-SLAM system.
Another model-based approach is reported in [157], where the authors intro-
duce structural lines in an extension of a standard EKF-SLAM system. The
dominant directions of the lines are estimated by computing their vanishing
points under the assumption of a Manhattan world [34]. All these model-based
approaches, though, are limited to very structured scenarios and/or planar mo-
tions, as they rely solely on line features.

The works in [135, 136] address a generic approach that compares the im-
pact of eight different landmark parametrization for monocular EKF-SLAM,
including the use of point and line features. Nevertheless, such systems are
only validated through analytic and statistical tools that assumed already
known data association and that, unlike our proposal, do not implement a
complete front-end that detect and track the line segments. Another tech-
nique for building a 3D line-based SLAM system has been proposed in the
recent work [151]. For that, the authors employ two different representations
for the line segments: the Plücker line coordinates for the initialization and 3D
projections, and an orthonormal representation for the back-end optimization.
Unfortunately, neither the source code is available nor the employed dataset
contains any ground-truth, therefore it has not been possible to compare with
our proposal.

Recently, line segment features have also been employed for monocular
pose estimation in combination with points, due to the bad-conditioned na-
ture of this problem. For that, in [61] the authors extended the semi-direct
approach in [53] with line segments. Thanks to this pipeline, line segments can
be propagated efficiently throughout the image sequence, while refining the
position of the end-points under the assumptions of high frame rate and very
narrow-baseline.

Finally, by the time of the first submission of this paper, a work with the
same name (PL-SLAM, [124]) was published extending the monocular algo-
rithm ORB-SLAM to the case of including line segment features computed
through the LSD detector [147]. Apart from being a monocular system (unlike
our stereo approach), their proposal deals with line tracking and matching in an
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essentially different way: they propagate the line segments by their endpoints
and then perform descriptor-based tracking, which decreases the time perfor-
mance of ORB-SLAM. Besides this computational drawback, when working
with features detected with the LSD detector, the variance of the endpoints
becomes quite pronounced, specially in challenging illumination conditions or
very low-textured scenes, making more difficult wide-baseline tracking and
matching between line features in non-consecutive frames. Our PL-SLAM ap-
proach, in contrast, does not make any assumption regarding the position of
the lines endpoints so that our tracking front-end allows to handle partially
occluded line segments, endpoints variance, etc., for both the stereo and frame-
to-frame tracking, hence becoming a more robust approach to point-and-line
SLAM.

3.F.3 PL-SLAM Overview
The general structure of the PL-SLAM system proposed here is depicted in
Figure 3.18, while its main modules will be presented in the following sec-
tions. This structure is strongly based on the scheme first proposed by ORB-
SLAM [115] and also implements three different threads: visual odometry, local
mapping, and loop closure. This efficient distribution allows for a continuous
tracking of the VO module while the local mapping and the loop closure ones
are processed in the background only when a new keyframe is inserted (other
approaches that exploits parallel threads can be found elsewhere [88, 118]).
As will be further described, our proposal also takes some of the ORB-SLAM
ideas as basis for developing our point-and-line SLAM system.

Map

The map consists of i) a set of keyframes (KFs), ii) the detected 3D landmarks
(both keypoints and line segments), iii) a covisibility graph and iv) a spanning
tree.

The keyframes contain the observed stereo features and their descriptors,
a visual descriptor of the corresponding left image computed through a visual
vocabulary, as explained later in Section 3.F.6, and the information of the 3D
camera pose.

Regarding the landmarks, we store the list of observations and the most
representative descriptor for each detected landmark. Besides, specifically for
points, we also keep its estimated 3D position while, for the line segments, we
keep both their direction and the estimated 3D coordinates of their endpoints.

Finally, the covisibility information is modeled by a graph (as in [139]),
where each node represents a KF, and the edges between KFs are created only
if they share a minimum number of landmarks (which in this work is set to
20), allowing for real-time bundle adjustment of the local map. Please, refer
to Figure 3.19 for an example of a covisibility graph.
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Figure 3.18: Scheme of the stereo PL-SLAM system.

In order to perform a faster loop closure optimization, we also form the
so-called essential graph, which is less dense than the covisibility graph as an
edge between two KFs is created only when they share more than 100 landmark
observations. Finally, the map also contains a spanning tree, which stands for
the minimum connected representation of a graph that includes all the KFs.
Both the essential graph and the use of a spanning tree for loop closure are
ideas originally proposed in [115].

Feature Tracking

We perform feature tracking through the stereo visual odometry algorithm
from our previous work [62]. In a nutshell, we track image features (points and
segments) from a sequence of stereo frames and compute their 3D position
and their associated uncertainty represented by covariance matrices. The 3D
landmarks are then projected to the new camera pose, and the projection
errors are minimized in order to obtain both the camera pose increment and
the covariance associated to such estimation. This process is repeated every
new frame, performing simply frame to frame VO, until a new KF is inserted
into the map. Further discussion about the feature tracking procedure will be
formally addressed in Section 3.F.4.

Once a KF is inserted into the map, two procedures are run in parallel:
local mapping and loop closure detection.
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Local Mapping

The local mapping procedure looks for new feature correspondences between
the new KF, the last one and those connected to the last one in the covis-
ibility graph. This way, we build the so-called local map of the current KF,
which includes all the KFs that share at least 20 landmark observations with
the current one as well as all the landmarks observed by them. Finally, an
optimization of all the elements within the local map (i.e. KF poses and land-
marks positions) is performed. A detailed description of this procedure will be
presented in Section 3.F.5.

Loop Closure

In parallel to local mapping, loop closure detection is carried out by extracting
a visual descriptor for each image, based on a bag-of-words approach, as will be
described in Section 3.F.6. All the visual descriptors of the captured keyframes
during camera motion are stored in a database, which is later employed to find
similar frames to the current one. The best match will be considered a loop
closure candidate only if the local sequence surrounding this KF is also similar.
Finally, the relative SE(3) transformation between the current KF and the
loop closure candidate is estimated so that, if a proper estimation is found,
all the KFs poses involved in the loop are corrected through a pose-graph
optimization (PGO) process.

It is important to remark that the stereo visual odometry system runs
continuously at every frame while both the local mapping and loop closure
detection procedures are launched in the background (in separated threads)
only when a new KF is inserted, thus allowing our system to reach real-time
performance. In the event of a new keyframe being inserted in the system while
the local mapping thread is still being processed, the keyframe is temporary
stored until the map is updated and then a new local mapping process is
launched.

It is worth mentioning that, as declared before, these mapping and loop
closure pipelines are identical to the ones presented in ORB-SLAM, being
aimed to reduce (along with the incorporation of recent sparse algebra tech-
niques) the high computational burden that general BA involves. Within the
BA framework, our proposal belongs to the so-called relative techniques (e.g.
[113, 130, 131]), which have gained great popularity in the last years as an
alternative to the more costly global approaches (e.g. [80,88]).

3.F.4 Feature Tracking
This section reviews the most important aspects of our previous work [62],
which deals with the visual odometry estimation between consecutive frames,
and also with the KF decision policy. Briefly, both points and line segments
are tracked along a sequence of stereo frames (see Figure 3.17), and, then,
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Figure 3.19: Covisibility graph in the sequence lt-first for which we have represented
the edges connecting the keyframes with green lines.

both the 3D motion of the camera and its uncertainty are computed through
the minimization of the projection errors. Note that this process only performs
the optimization of the camera poses and not the 3D position of the tracked
features, whose coordinates in the map are refined during the local bundle
adjustment procedure explained in the next section.

Since the stereo cameras employed in the experiments are pre-calibrated,
the initialization of these features is performed in a single stereo shot by
straightforwardly employing their extrinsic parameters to determine the 3D
position of both the observed keypoints and lines.

Point Features

In this work we use the well-known ORB method [126] due to its great per-
formance for keypoint detection, and the binary nature of the descriptor it
provides, which allows for a fast, efficient keypoint matching. In order to re-
duce the number of outliers, we only consider measurements which fulfill that
the best match in the left image corresponds to the best match in the right
one, i.e. they are mutual best matches. Finally, we also filter out those matches
whose distance in the descriptor space with the second best match is less than
twice the distance with the best match, to ensure that the correspondences
are meaningful enough.

Line Segment Features

The Line Segment Detector (LSD) method [147] has been employed to extract
line segments, providing high precision and repeatability. For stereo matching
and frame-to-frame tracking we augment line segments with a binary descrip-
tor provided by the Line Band Descriptor (LBD) method [154], which allows
us to find correspondences between lines based on their local appearance. Sim-
ilarly to the case of points, we check that both candidate features are mutual
best matches, and also that the feature is meaningful enough. Finally, we take
advantage of the useful geometrical information that line segments provide in
order to filter out those line matches with different orientations and lengths,
and those with a high difference on the disparities of the endpoints. Notice
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that this filter helps the system to retain a larger amount of structural lines,
which allows the formation of more consistent maps based on points and lines
(see Figure 3.17(d)).

Motion Estimation

Once we have established the correspondences between two stereo frames, we
back-project both the keypoints and the line segments from the first frame to
the next one. Then, we iteratively estimate the camera ego-motion through a
robust Gauss-Newton minimization of the line and keypoint projection errors.
In order to deal with outliers, we employ a Pseudo-Huber loss function and
perform a two-step minimization, as proposed in [112]. Finally, we obtain the
incremental motion estimation between the two consecutive frames, which can
be modelled by the following normal distribution:

ξt,t+1 ∼N (ξ∗t,t+1,Σξ∗t,t+1
) (3.27)

where ξ∗t,t+1 ∈ se(3) is the 6D vector of the camera motion between the frames
t and t+ 1, and Σξ∗t,t+1

stands for the covariance of the estimated motion,
approximated by the inverse of the Hessian of the cost function in the last
iteration.

Keyframe Selection

For deciding when a new KF is inserted in the map, we have followed the ap-
proach in [83] which employs the uncertainty of the relative motion estimation.
Thus, following equation (3.27), we transform the uncertainty from the covari-
ance matrix into a scalar, named entropy, through the following expression:

h(ξ) = 3(1 + log(2π)) + 0.5 log(|Σξ|) (3.28)
Then, for a given KF i we check the ratio between the entropy from the
motion estimation between the previous KF i and the current one i+u and
that between the previous KF i and its first consecutive frame i+ 1, i.e.:

α=
h(ξi,i+u)
h(ξi,i+1) (3.29)

If the value of α lies below some pre-established threshold, which in our ex-
periments has been set to 0.9, then the frame i+u is inserted to the system as
a new KF. Notice that to compute the expression in Equation (3.28), we need
the uncertainty of the pose increment between non-consecutive frames. Since
Equation (3.27) only estimates the incremental motion between consecutive
frames, a series of such estimations are composed through first order Gaussian
propagation techniques to obtain the covariance between two non-consecutive
KFs.
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3.F.5 Local Mapping
This section describes the behavior of the system when a new KF is inserted,
which essentially consists in performing the bundle adjustment of the so-called
local map i.e.: those KFs connected with the current one by the covisibility
graph and the landmarks observed by those local KFs.

Keyframe Insertion

Every time the visual odometry thread selects a KF, we insert it into the
SLAM system and optimize the local map. First, we refine the estimation of the
relative pose change between the current and the previous KFs, since the one
provided by the VO is estimated by composing the relative motions between
the intermediate frames. For that, we perform data association between the
KFs, taking into account the geometrical restrictions described in Section 3.F.4
and obtaining a consistent set of common features observed in them. Then,
we perform a similar optimization than the one presented in Section 3.F.4, for
which we employ the pose provided by the VO thread as the initial estimation
for a Gauss-Newton minimization. Once we have computed the relative pose
change between the KFs, we insert the current one into the system, including:

1. An index for the keyframe.

2. The information of its 3D pose, which comprises an absolute pose and
the relative pose from the previous KF, along with their associated un-
certainties.

3. The new 3D landmarks, which are initialized by storing both their 2D
image coordinates and their descriptors. The new observations of the
already existing landmarks are also added to the map.

Finally, we also look for new correspondences between the unmatched feature
observations from the current frame, and the landmarks in the local map.

Local Bundle Adjustment

After inserting the KF, the next step is to perform a bundle adjustment of
the local map. As stated before, this map is formed by all the KFs connected
with the current one in the covisibility graph (i.e. those that share at least 20
landmarks) and also all the landmarks observed by the local KFs. For that, let
us define the vector ψ that contains the variables to be optimized, which are
the se(3) pose of each KF ξiw, the 3D position of each point Xwj , and also
the 3D positions of the endpoints for each line segment: {Pwk,Qwk}. Then,
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we minimize the projection errors between the observations and the landmarks
projected to the frames where they were observed:

ψ∗ = argmin
ψ

∑
i∈Kl

[ ∑
j∈Pl

e>ijΣ−1
eij
eij +

∑
k∈Ll

e>ikΣ−1
eik

eik
]

(3.30)

where Kl, Pl and Ll refer to the groups of local KFs, points, and line segments,
respectively.

In this expression, the projection error eij stands for the 2D distance be-
tween the observation of the j-th map point in the i-th KF, and can be ex-
pressed as:

eij = xij−π(ξiw,Xwj) (3.31)

where the function π : se(3)×R3 7→ R2 first places the j-th 3D point Xwj (in
world coordinates) into the local reference system of the i-th KF, i.e. Xij ,
and then projects this point to the image. The use of line segments is slightly
different, since we cannot simply compare the position of the endpoints as
they might be displaced along the line or occluded from one frame to the next
one. For that, we take as error function the distances between the projected
endpoints of the 3D line segment and its corresponding infinite line in the
image plane. In this case, the error eik between the k-th line observed in the
i-th frame, is given by:

eik =
[
lik ·π(ξiw,Pwk)
lik ·π(ξiw,Qwk)

]
(3.32)

where Pwk andQwk refer to the 3D endpoints of the line segments in the world
coordinate system and lik is the equation of the infinite line that corresponds
to the k-th line segment in the i-th KF, which can be obtained with the
cross product between the 2D endpoints of the line segments in homogeneous
coordinates, i.e.: lik = pik×qik.

The problem in (3.30) can be iteratively solved by following the Levenberg-
Marquardt optimization approach, for which we need to estimate both the
Jacobian and the Hessian matrices:

∆ψ =
[
H+λdiag(H)

]−1J>We (3.33)

where the error vector e contains all the projection errors eij and eik. This
equation, along with the following update step:

ψ′ =ψ�∆ψ (3.34)

can be applied recursively until convergence, resulting in the optimal ψ, from
which we can update the position of the local KFs and landmarks. Notice that
the update equation cannot be directly applied to the whole vector, given the
different nature of the variables in ψ.
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(3.35)

It is important to remark that each observation error eij or eik, only de-
pends on a single KF ξiw, and a single landmark Xwj or {Pwk,Qwk}. Hence,
the Hessian matrix can be formed by adding the influence of each observation
to its corresponding block, as showed in Equation (3.35), where the contribu-
tion of two single features to the Hessian is presented (the full matrix is formed
by H =

∑
i∈Kl

∑
j∈Pl

∑
k∈Ll

Hi,jk).

Notice that, for the rest of observations that belong to the KFs that are
not part of the local map, their Jacobian matrices ∂eij

∂ξiw
and ∂eik

∂ξiw
are equal

to zero, since here we only optimize the local map while the rest of the KFs
remain fixed.

It should also be underlined that in (3.30) the influence of the errors in both
points and lines is weighted with Σ−1

eij
and Σ−1

eik
, respectively, which stand for

the inverses of the covariance matrixes associated to the uncertainty of each
projection error. In practice, though, it is more effective to set such covariances
to the identity matrix and follow a similar approach to the one described in
Section 3.F.4 as it introduces robust weights and also deals with the presence
of outlier observations.

Finally, we remove from the map those landmarks with less than 3 obser-
vations, as they are less meaningful.

3.F.6 Loop Closure
In this work, we adopt a bag of words (BoW) approach based on the binary
descriptors extracted for both the keypoints and the line segments in order to
robustly cope with data association and loop closure detection.

In short, the BoW technique consists in summarizing all the information
extracted from an image (in our proposal, the descriptors of keypoints and
line segments) into a word vector, employing for that a vocabulary that has
been built off-line from different image datasets. Then, as the camera moves,
the words computed from the grabbed images are stored in a database that is
later employed to search for the most similar image to the current keyframe.
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In the following, we first address the process of detecting loop closures from
the created BoWs, and then describe the correction of the pose estimations of
the keyframes involved in the loop.

Loop Closure Detection

The detection of loop closures involves both to find an image similar to the
one being currently processed and to estimate the relative pose change between
them, as described next.

3.F.6.1 Visual Place Recognition

Specifically, we have employed the method presented in [57], which was ini-
tially developed for BRIEF binary descriptors, and subsequently adapted to
ORB keypoints. Since, in our work, segments are also augmented with binary
descriptors, we propose to build two specific visual vocabularies and databases
for them. This way, at each time step, the most similar images in the databases
of keypoints and line segments are retrieved in parallel in order to look for loop
closures. This dual-search is motivated by the fact that some scenes may be
described more distinctively by lines than by keypoints or vice versa. Thus,
employing both methods and merging their results allow us to refine the output
of database queries, incurring in a small computational footprint.

To illustrate this, we first define a similarity matrix as the matrix that
contains in each row the similarity values, in the range [0,1], of a certain image
with all the images stored in the database. Then, we compute such matrices
from a sequence recorded in a corridor that goes around a square area.

Concretely, the matrix in Figure 3.20(a) has been computed employing
only ORB keypoints to build both the vocabulary and the database, while
the one in Figure 3.20(b) relies only on lines. The color palette goes from
blue (score = 0) to red (score = 1). As can be noted, some yellowish areas
appear in the first matrix in places where the images look similar according
to the keypoints (specifically, after turning at the corners of the corridor).
This indicates potential loop closures although, in fact, they are just false
positives. The second (line-only) matrix, though, does not present this behavior
so that it may be employed to discard them. On the other hand, the first
matrix presents more distinctiveness, since the difference in score is generally
larger for non-similar images than in the line-only matrix. Therefore, the image
similarities yielded by querying both feature databases may be combined to
improve robustness when detecting potential loop closures.

In this work, we propose to weight the results from both features (sk for
keypoints and sl for lines) according to two criteria, namely strength and dis-
persion. The former weights the similarity score proportionally to the number
of features of a certain type (keypoint or line) in the set of features detected
in the image, while the latter takes into account the dispersion of the features
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Figure 3.20: Similarity matrices for a certain dataset where the (a) ORB keypoint-
only bag-of-words approach yields false positives that are not present in the (b) LBD
line-only approach.

in the image (the more disperse the higher the weight will be). This yields a
more robust total similarity score for the image (st):

st = 0.5(nk/(nk+nl) +dk/(dk+dl))sk+
0.5(nl/(nk+nl) +dl/(dk+dl))sl.

(3.36)

In this equation, nk and nl are the number of keypoints and lines extracted
in the image, respectively, while the dispersion values for the keypoints and
the lines (dk and dl, respectively) are computed as the square root of the sum
of the variances in the x and y coordinates of the found features. For the case
of the lines, such x and y coordinates are taken from their midpoint.

Note that this formulation gives the same importance to both kinds of
features (hence the 0.5 factor), although this could be tuned according to the
environment (e.g. if the images are expected to be low-textured, it might be
more convenient to down-weight the keypoint result with respect to the lines
one). Nevertheless, the results will not change significantly with the weighting
factor, and a finer optimization would not be worthy as long as both kind of
features have influence in the total score.

We have empirically evaluated this strategy in comparison to four other
alternatives following the classification framework employed in [97] for four
different datasets: Oxford dataset [133], sequence 4 in Malaga dataset [20],
sequence 7 in KITTI dataset [58] and i3tf dataset [151]. Concretely, the com-
pared alternatives consisted in taking into account:

• only the score yielded from querying the keypoint bag-of-words (sk),
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Figure 3.21: Precision-recall curves for four different datasets: (a) Oxford dataset,
(b) sequence 4 in Malaga dataset, (c) sequence 7 in KITTI dataset and (d) i3tf
dataset, for the 10 most similar images in the dataset.

• only the score yielded from querying the line bag-of-words (sl),

• both sk and sl but following only the strength criterion (strategy #1),

• both sk and sl but following only the dispersion criterion (strategy #2).

We have tested them on synchronized sequences without any loop closures, so
that the elements in the diagonal matrix are 1, as they correspond to the same
image in both the database and the query. Subsequently, we have selected, for
each query image, the k most similar images from the database (i.e. those with
largest total score), and have considered a match as an inlier (true positive
match) if it was close enough to the diagonal with a tolerance of d frames.
Finally, we have varied the tolerance and measured the ratio of inliers for all
the strategies to generate the precision-recall curves in the above mentioned
datasets.

As shown in Figure 3.21, all three combined strategies outperform the point
and line-only approaches, while strategy #3 (that corresponding to Equation
3.36) performs slightly better than the other two in all the evaluated datasets.
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3.F.6.2 Estimating the Relative Motion

Once we have a loop closure candidate, we still need to discard false positives
that could have not been detected with the above mentioned approach. This
is achieved by recovering the relative pose between the two KFs involved in
the loop closure (namely current and old KFs from now on). For that, we first
look for matches between the features from both KFs in a similar way to the
one described in Section 3.F.3, while also searching for new correspondences
between the current KF and the local map associated to the old one. Then,
we estimate a valid transformation ξ̂ij ∈ se(3) that relates both KFs following
the approach described in Section 3.F.4. Finally, since an erroneous detection
of a loop closure (false positive) would produce a very negative impact on the
SLAM system, we check the consistency of the loop closure candidate with the
following tests:

i) The maximum eigenvalue of the covariance matrix Σξ̂ij
is inferior to 0.01.

ii) The obtained translation and rotation cannot rise over 0.50 meters and
3.00 degrees, respectively.

iii) The inliers ratio in the estimation is higher than 50%.

Regarding the first criterion, a large value of the eigenvalues of the uncer-
tainty matrix (see (3.27)) is often an indicator of an ill-conditioned Hessian
matrix, most probably due to the presence of a large number of outliers in the
feature matching set. Ensuring that the maximum eigenvalue of the covariance
matrix is below a certain threshold allows us to detect potentially incorrect
loop closures candidates and discard them.

In the case of the second criterion, we also set a maximum translation
and rotation limit for the estimated pose, as BoW-based approaches typically
provides positive matches that are very similar in appearance and pose, so
that a large change in pose between the involved frames usually indicates a
wrong loop closure detection. Finally, the third criterion sets a minimum ratio
of detected inliers after the optimization process, since motion estimation is
strongly affected by the presence of outliers and incorrect associations from
visual place recognition.

Loop Correction

After estimating all consecutive loop closures in our trajectory, we then fuse
both sides of the loop closure correcting the error distributed along the loop.
This is typically solved by formulating the problem as a pose-graph optimiza-
tion (PGO), where the nodes are the KFs inside the loop, and the edges are
given by both the essential graph and the spanning tree. For that, let us define
the following error function as the se(3) difference between the transformation



3.F. PL-SLAM: A STEREO SLAM SYSTEM THROUGH THE COMBINATION
OF POINTS AND LINE SEGMENTS 81

that relates the KFs ξ̂ij to the current observation of the same transformation:

rij(ξiw,ξjw) = log
(
exp(ξ̂ij) ·exp(ξjw) ·exp(ξiw)−1) (3.37)

where the operators log : SE(3) 7→ se(3) and exp : se(3) 7→ SE(3) refer to the
well-known logarithm and exponential maps. Notice that in the case of a reg-
ular edge, the value of ξ̂ij coincides with the estimation of ξij in the first step
of the optimization, and hence the error in these edges is initially zero.

This PGO problem is solved using the g2o library [91] yielding the optimal
pose of the KFs included in the optimization, i.e. the essential graph and the
spanning tree, when considering the loop closure edges. Finally, we update the
pose of the KFs along with the pose of the landmarks observed by them, and we
also merge the local maps of both sides of the loop by first fusing the landmarks
matched while estimating their relative motion (please, refer to Section 3.F.6),
and then looking for new correspondences between the unmatched landmarks.

3.F.7 Experimental Validation
In this section we evaluate the performance of PL-SLAM in several video se-
quences from different datasets, in order to demonstrate the robustness of our
proposal, which does not fail in any of the considered sequences, even in the
low-textured ones. Besides, we also provide an estimation of both the cam-
era trajectory and the map while computing a measurement of the committed
error with respect to the ground truth. Concretely, we have tested our pro-
posal against the EuRoC MAV dataset [23], a low-textured dataset specifically
recorded for assessing the effect of adding lines to the visual SLAM system,
and the well-known KITTI video sequences [58].

It is important to remark that the error metric employed in this paper for
the EuRoC MAV and the low-textured datasets is the one proposed in [140] as
Relative Pose Error (RPE), which computes the relative error in translation
between the estimated camera poses and the ground truth. Using RPE as a
metric allows us to obtain comparable error values for all the experiments,
regardless the presence and number of loop closures in the camera trajectory,
as relative measurements are not significantly affected by them, unlike abso-
lute pose error measurements. For the KITTI dataset, though, we employ the
standardized metrics provided by the KITTI benchmark to obtain the error
measurements presented in Table 3.10.

In the following, we present examples of the trajectories and maps esti-
mated by PL-SLAM, together with the average errors committed by (i) our
proposal, (ii) a point-only version of our system (P-SLAM), (iii) a line-only
version of our system (L-SLAM), and (iv) ORB-SLAM2, which is considered
one of the state-of-the-art methods for stereo visual SLAM. For the latter, we
have employed the open source implementation of its last version [116].
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Figure 3.22: Map (in black) comprising points and line segments, and the trajectory
(in blue) obtained with PL-SLAM from an outdoor environment in the sequence
KITTI-07. The map presents noisy measurements in some parts (e.g. zone A), and
structural lines from the environment, such as parts of the buildings (e.g. zone B).

We have also tried to compare our method against the one proposed in
[151], but unfortunately, as their approach to perform line segment tracking
is based on an optical flow algorithm, their proposal fails when applied to
datasets with large motions between frames. Therefore, we could not include
their results in this paper.

All the experiments have been run on an Intel Core i5-6600 CPU @ 3.30GHz
and 16GB RAM without GPU parallelization.

EuRoC MAV dataset

The EuRoC MAV dataset [23] consists of 11 stereo sequences recorded with
a MAV flying across three different environments: two indoor rooms and one
industrial scenario, containing sequences that present different challenges de-
pending on the speed of the drone, illumination, texture, etc. As an example,
we show the central part of the map built from the V1-02-easy sequence in
Figure 3.23(b), where two different parts are clearly visible. The first one shows
the features extracted from the non-structured part of the environment (refer
to the right side of the map), presenting a relatively large amount of small
and noisy line segments, which make difficult the interpretation of that part
of the scene. In contrast, at the bottom left part of the figure, we can observe
the structured part of the environment, which is clearly represented in the
map through a set of line segments that depicts a checkerboard and a bunch
of boxes. This example reflects that the maps built from line segments are
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(a) (b)

Figure 3.23: Mapping results in the V1-01-easy sequence from the EuRoC MAV
dataset. (a) Features tracked between two consecutive keyframes. (b) Resulting 3D
map for the sequence. The checkerboard and the boxes in the scene are clearly
reflected in the left part of the map, while more noisy features can be found in the
rest, as a consequence of factors like non-textured surfaces, high illumination, etc.

geometrically richer than those created from only points, so that they can be
employed to extract high-level meaningful information from them.

Finally, Table 3.8 shows the mean relative translational RMSE of the mo-
tion estimation in the different sequences included in the dataset. It can be
observed that, for indoor and structured scenarios, the inclusion of line seg-
ment features in the system is very beneficial to improve the robustness of
the system and the estimation of the camera trajectory. In this case, both the
point-only and the line-only approaches yield worse results than PL-SLAM,
while ORB-SLAM2 fails in some sequences, as keypoint tracking is prone to be
lost. PL-SLAM, on the contrary, successfully estimates the camera trajectory
in all the sequences.

Low-textured Scenarios

We have also assessed the performance of the compared methods in challeng-
ing low-textured scenarios. For that, we have recorded a set of four stereo
sequences (namely lt-easy, lt-medium, lt-difficult and lt-rot-difficult) in a room
equipped with an OptiTrack system1, which provides the ground-truth of the
camera trajectory. The resulting covisibility graph yielded by our PL-SLAM
system for the sequence lt-medium is shown in Figure 3.19, where a loop closure
between the initial and the final part of the trajectory can be observed. The
experiments in these sequences (refer to Table 3.9) reveal that, while point-
based approaches either fail to recover the trajectory or yield worse results
than in previous scenarios, the two methods based on line segments are capa-
ble of robustly estimating the camera path in all sequences, even achieving a
good performance in terms of accuracy.

1http://optitrack.com/
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Table 3.8: Relative translational RMSE errors in the EuRoC MAV dataset [23]. A
dash indicates that the experiment failed.

Sequence P-SLAM L-SLAM PL-SLAM ORB-SLAM2
MH-01-easy 0.0811 0.0588 0.0416 0.0251
MH-02-easy 0.1041 0.0566 0.0522 0.0638
MH-03-med 0.0588 0.0371 0.0399 0.0712
MH-04-dif - 0.1090 0.0641 0.0533
MH-05-dif 0.1208 0.0811 0.0697 0.0414
V1-01-easy 0.0583 0.0464 0.0423 0.0405
V1-02-med 0.0608 - 0.0459 0.0617
V1-03-dif 0.1008 - 0.0689 -
V2-01-easy 0.0784 0.0974 0.0609 -
V2-02-med 0.0767 - 0.0565 0.0666
V2-03-dif 0.1511 - 0.1261 -

Table 3.9: Relative translational RMSE errors in low-textured sequences recorded
with GT data from an OptiTrack system. A dash indicates that the experiment
failed.

Sequence P-SLAM L-SLAM PL-SLAM ORB-SLAM2
lt-easy - 0.1412 0.1243 0.1391
lt-medium - 0.1998 0.1641 -
lt-difficult - 0.1801 0.1798 -
lt-rot-difficult 0.2411 0.2247 0.2034 0.2910

KITTI dataset

Finally, we have tested PL-SLAM on the well-known KITTI dataset [58], using
the 11 sequences that provide ground truth and yielding the results presented
in Table 3.10. Note that this is an urban dataset with highly textured image
sequences and, as expected, the exploitation of line segments barely increases
the accuracy, since point features are more than sufficient for a proper opera-
tion of a keypoint-based SLAM system. Still, the reasons why we have tested
our proposal against the KITTI sequences are twofold: (i) the lack of publicly
accessible datasets containing both low-textured scenes and ground truth, and
(ii) the KITTI dataset has become a standard when assessing visual SLAM.

For this dataset, we have employed the standard error measurements pro-
posed by the KITTI benchmark site, where the translational errors are ex-
pressed in % of the trajectory length while the rotational part is expressed
in deg/100m of the trajectory. It is important to highlight that these results
are obtained from applying the KITTI benchmarking scripts to the trajecto-
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(a) (b) (c)

Figure 3.24: Some trajectories estimated with PL-SLAM (in green) from the KITTI
dataset (ground-truth in blue). (a) Trajectory estimated in the sequence KITTI-00,
where a large amount of loop-closures can be found. (b) The sequence KITTI-08
does not present any loop closure, and hence the drift along the trajectory is not
corrected. (c) Finally, the sequence KITTI-07 presents a loop closure between the
initial and final parts of the trajectory.

ries estimated by the evaluated methods. This also includes ORB-SLAM2, for
which we have generated the estimated trajectory for each sequence with both
the code and the parameters they publicly provide in their repository. A dif-
ferent (and probably more tuned) set of parameters might cause the difference
between their results obtained in this evaluation and those presented in the
ORB-SLAM2 original paper, which could not be reproduced.

In any case, and regarding the robustness of the system, both PL-SLAM
and ORB-SLAM2 successfully complete the trajectory estimation for all the
sequences, as expected for such a textured dataset. Unsurprisingly, the results
confirm worse performance of the line-only approach in these outdoor scenar-
ios, even failing at properly estimating the trajectory of the stereo camera
in some of the sequences (those recorded in rural environments, which lacks
structural lines).

As an illustrative example, Figure 3.22 depicts the trajectory and the map
estimated by PL-SLAM in the sequence KITTI-07. As can be seen in the zone
marked as A in the figure, the presence of line segments can introduce some
’noise’ in the maps, as not all the detected lines have a physical meaning, i.e.
some lines do not belong to structural parts of the environment. Nevertheless,
in other parts of the sequence, relevant information of the scene structure has
been correctly captured in the map. This can be observed in the zone marked
as B in the figure, where the buildings can be clearly observed, leading to a
descriptive representation of the scene. On the contrary, the presence of noisy
points in the map is less noticeable to the human eye, as they do not provide
as much spatial information as line segments.

Finally, Figure 3.24 depicts the estimated trajectory obtained with PL-
SLAM in three sequences from the KITTI dataset that present different num-
ber of loop closures. It can be noted the importance of correcting the drift in
long sequences to obtain accurate absolute solutions (refer to Figure 3.24(a,c)),
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Table 3.10: Mean relative RMSE for the KITTI dataset [58]. The translation errors
are expressed in %, while the rotation errors are also expressed relatively to the
translation in deg/100m. A dash indicates that the experiment failed.

P-SLAM L-SLAM PL-SLAM ORB-SLAM2
Seq. trel Rrel trel Rrel trel Rrel trel Rrel

00 2.47 0.95 3.32 6.67 2.36 0.89 1.82 0.58
01 8.25 5.85 - - 5.80 2.32 1.24 0.32
02 2.54 1.04 6.62 9.42 2.35 0.91 1.81 0.46
03 3.88 1.71 6.83 7.14 3.74 1.54 2.79 0.44
04 2.14 0.42 - - 2.21 0.30 1.07 0.18
05 2.03 0.96 3.06 2.25 1.74 0.88 1.03 0.37
06 4.37 3.01 5.99 8.29 3.51 2.72 1.25 0.56
07 2.65 1.35 3.58 6.52 1.83 1.03 0.94 0.46
08 2.73 1.34 6.15 9.23 2.18 1.15 1.78 0.57
09 1.90 1.02 6.92 4.66 1.68 0.92 1.11 0.42
10 1.92 1.32 6.86 5.55 1.21 0.99 1.09 0.46

in contrast to the results obtained in sequences without loop closures, as the
one presented in Figure 3.24(b).

Performance

Regarding the time performance, we present Table 3.11 that shows the aver-
age processing time of each part of the PL-SLAM algorithm, for each of the
tested datasets. Thanks to the efficient implementation of [62], our VO thread
achieves real-time performance in average for all combinations of features (i.e.
points, lines, and points and lines) and for all the datasets, since the acqui-
sition time for the KITTI sequences is 10 fps and for both the EuRoC MAV
and the low-textured datasets is 20 fps, while our proposal performs in 15 fps,
20 fps and 25 fps, respectively.

On the other hand, the local bundle adjustment (LBA) can be processed
at around 20 Hz, which is fast enough for our purposes, as it runs in a parallel
thread while the VO thread is continuously processing new frames. Finally, the
loop closure management, although being the most time consuming step of the
algorithm, presents acceptable values. Please, notice that these are average val-
ues, and, for each particular sequence, loop closure varies substantially: those
presenting small loops can perform loop closure in few milliseconds while se-
quences with loops involving a significant amount of keyframes and landmarks
spend higher processing time than either the local mapping or the visual odom-
etry procedures. In any case, since loop closure is computed in a parallel thread
(and not at every frame), the rest of the system can still run in real time.
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Table 3.11: Average runtime of each part of the algorithm.
KITTI EuRoC MAV Low-Textured

1241×376 752×480 752×480
Visual Odometry 10 fps 20 fps 20 fps

P-SLAM 12.2 ms 8.7 ms 8.1 ms
L-SLAM 54.6 ms 47.6 ms 46.1 ms
PL-SLAM 66.0 ms 49.7 ms 40.0 ms
ORB-SLAM2 98.1 ms 69.0 ms 61.4 ms
Local Mapping

P-SLAM 38.9 ms 37.3 ms 35.8 ms
L-SLAM 37.4 ms 36.0 ms 34.5 ms
PL-SLAM 43.8 ms 40.6 ms 42.1 ms
ORB-SLAM2 230.0 ms 162.0 ms 102.0 ms
Loop Closing

P-SLAM 11.3 ms 3.5 ms 3.7 ms
L-SLAM 9.5 ms 3.9 ms 3.4 ms
PL-SLAM 28.0 ms 4.7 ms 4.5 ms
ORB-SLAM2 9.1 ms 3.6 ms 4.4 ms
Keyframe rate

P-SLAM 4.78 f/kf 6.36 f/kf 3.28 f/kf
L-SLAM 3.68 f/kf 4.45 f/kf 3.25 f/kf
PL-SLAM 5.06 f/kf 5.36 f/kf 4.78 f/kf
ORB-SLAM2 2.77 f/kf 5.26 f/kf 3.10 f/kf

Finally, in order to illustrate the real-time capability of our system, we
have also provided in Table 3.11 the rate of captured frames before inserting a
new keyframe for each dataset, thus giving a picture of how often the system
demands a local mapping and loop closure management.

Discussion

The experimental validation presented in this paper proves that PL-SLAM
operates more robustly than point-only approaches, specially in low-textured
scenarios where keypoints are difficult to extract and track. Moreover, our
implementation achieves real-time performance for all the considered datasets,
which include an heterogeneous set of both indoor and outdoor scenarios.

Regarding the accuracy, we have measured the relative RMSE between
keyframes for both the EuRoC MAV and the low-textured datasets, as rela-
tive measurements are not influenced by the presence of loop closures, hence
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leading to results that can be more comparable between different sequences.
On the other hand, we have employed the metrics proposed in the KITTI
benchmark (i.e. absolute translational errors expressed in % of the trajectory
length and absolute rotational errors expressed in deg/100m of the trajectory)
in our experiments with the KITTI sequences, as they have become standard-
ized for such dataset. PL-SLAM’s results reveal better performance, in terms of
accuracy, than its point-only and line-only approaches, and somewhat inferior
performance of the ORB-SLAM2 method while, at the same time, providing
more robustness in challenging, low-textured scenes in where point-only ap-
proaches are prone to fail. This inferior performance is mainly explained by
the fact that our approach does not perform local bundle adjustment in ev-
ery frame, unlike ORB-SLAM2, hence slightly increasing the final drift of the
trajectory, especially in those sequences without loop closures.

Finally, and since our system architecture is strongly based on that of
ORB-SLAM, we would like to highlight the essential differences between these
two approaches: i) the inclusion of line segments as image features, which
allows us to achieve robust camera localization in scenarios where keypoint-
only methods usually perform poorly or even fail, ii) the inclusion of binary
line descriptors in the loop closure procedure, in order to make it more robust,
and iii) the implementation of the visual odometry thread as a frame-to-frame
incremental motion estimation to meet the computational constraints that line
segments introduce, unlike ORB-SLAM2, which continuously performs Local
Bundle Adjustment between recent frames.

3.F.8 Conclusions
In this paper we have proposed a novel stereo visual SLAM system that ex-
tends our previous VO approach in [62], and that is based on the combination
of both keypoints and line segment features. Our proposal, coined PL-SLAM,
contributes with a robust and versatile system capable of working in all types
of environments, including low-textured ones, while producing geometrically
meaningful maps. For that, we have developed the first open source SLAM sys-
tem that runs in real time and that simultaneously employs keypoints and line
segment features. Our implementation has been developed from scratch and
its based on a bundle adjustment solution that seamlessly deals with the com-
bination of different kinds of features. Moreover, we have extended the place
recognition bag-of-words approach in [57] for the case of simultaneously em-
ploying points and line segments, in order to enhance the loop-closure process.
Our approach has been tested on well-known datasets such as EuRoC MAV
or KITTI, as well as in a sequence of stereo images recorded in a challenging
low-textured scenario. In these experiments, PL-SLAM has been compared to
ORB-SLAM2 [116], a point-only system and a line-only system, obtaining su-
perior performance in terms of robustness in most of the dataset sequences,
while still operating in real-time.
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With respect to the accuracy, our proposal gets similar results to ORB-
SLAM2 for the EuRoC MAV and low-textured datasets when using the metric
defined in [140], which computes the relative RMSE between keyframes. On
the other hand, the experiments with the KITTI dataset shows somewhat
superior performance to the ORB-SLAM2 method following its standardized
metrics for both absolute translational and rotational errors.

For future work, our implementation can benefit from faster keypoint front-
ends, such as the ones in SVO [53,54] and PL-SVO [61], where authors reduced
the computational time of the feature tracking with a semi-direct approach
that estimates the position of the features as a consequence of the motion
estimation, or from alternative tracking techniques [63] to improve robustness
in difficult illumination conditions. Finally, our algorithm can be employed to
obtain more accurate and refined maps by applying some SfM or Multi-Stereo
techniques [72,122] in order to filter the structural lines, hence obtaining more
meaningful information of the structured parts of the environment.





4
Dealing with Dynamic Illumination and HDR

Environments

4.A Introduction
Despite the impressive results reached by state-of-art SLAM and VO algo-
rithms in controlled lab environments, their robustness in more realistic scenar-
ios is still an open challenge. While there are different challenges for robust VO
and SLAM, as aforementioned, this chapter mainly focuses in improving the
robustness to dynamic or challenging illuminations and HDR environments.

The difficulties in such environments come not only from the limitations
of the sensors, conventional cameras often take over/under-exposed images
in such scenes, but also from the bold assumptions of VO or SLAM algo-
rithms, such as brightness constancy. These assumptions are severely violated
when navigating in these situations, due to both the automatic adjustment of
camera parameters (e.g. auto-exposure or HDR compensation) that results in
global or local changes of image features or to the rapidly varying appearance
variations occurring when traversing a dynamically illuminated scenario. As
a consequence, the number of features successfully tracked in such sequences
dramatically drops and therefore the localization problem becomes extremely
difficult to be solved.

To overcome these difficulties, two recent research lines have emerged re-
spectively: Active VO and Photometric VO. While the former tries to achieve
robustness by externally controlling the camera parameters (gain or exposure
time) [129] [155] , the latter explicitly models the brightness change using the
photometric model of the camera [96] [49].
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4.B Contributions
The aforementioned approaches have demonstrated to improve robustness to
challenging illuminations, however, they require advanced and detailed knowl-
edge of the sensor and a heuristic setting of several parameters, which cannot
be easily generalized. With the purpose of avoiding to deal with complex image
models for dynamic illuminations or invasive hardware methods to actively
control the parameter settings, the contributions of this thesis address this
problem from two different perspectives.

The first contribution to this matter, presented in [66], addresses this prob-
lem from a deep learning perspective. For that, input images are enhanced to
more informative and invariant representations for VO and SLAM thanks to
the generalization properties of deep neural networks to achieve robust perfor-
mance in varied conditions. In this work it is also demonstrated how the inser-
tion of long short term memory allowed for temporally consistent sequences, as
the estimation depends on previous states. The claims are validated by com-
paring the performance of two state-of-art algorithms in monocular VO/SLAM
(ORB-SLAM [115] and DSO [49]) with the original input and the enhanced
sequences, showing the benefits of this approach in challenging environments.

A more traditional perspective, purely geometrical, was exploited in [63]
for the robust tracking of line segments for challenging stereo sequences with
difficult illumination conditions. In this contribution we claimed that line seg-
ments can be successfully tracked by only considering their geometric consis-
tency along consecutive frames, for which the tracking problem was stated as
a sparse, convex `1-minimization of the geometrical constraints from any line
segment in the first image over all the candidates in the second one, within a
one-to-many scheme. The claimed features are validated by evaluating both the
matching performance and motion estimation in challenging video sequences
from benchmarked datasets.
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Abstract
One of the main open challenges in visual odometry (VO) is the ro-
bustness to difficult illumination conditions or high dynamic range
(HDR) environments. The main difficulties in these situations come
from both the limitations of the sensors and the inability to per-
form a successful tracking of interest points because of the bold
assumptions in VO, such as brightness constancy. We address this
problem from a deep learning perspective, for which we first fine-
tune a deep neural network with the purpose of obtaining enhanced
representations of the sequences for VO. Then, we demonstrate how
the insertion of long short term memory allows us to obtain tempo-
rally consistent sequences, as the estimation depends on previous
states. However, the use of very deep networks enlarges the compu-
tational burden of the VO framework; therefore, we also propose a
convolutional neural network of reduced size capable of performing
faster. Finally, we validate the enhanced representations by evalu-
ating the sequences produced by the two architectures in several
state-of-art VO algorithms, such as ORB-SLAM and DSO.

Supplementary Materials
A video demonstrating the proposed method is available at
https://youtu.be/NKx_zi975Fs

4.C.1 Introduction
In recent years, Visual Odometry (VO) has reached a high maturity and there
are many potential applications, such as unmanned aerial vehicles (UAVs) and
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augmented/virtual reality (AR/VR). Despite the impressive results achieved
in controlled lab environments, the robustness of VO in real-world scenarios
is still an unsolved problem. While there are different challenges for robust
VO (e.g., weak texture [47] [61]), in this work we are particularly interested
in improving the robustness in HDR environments. The difficulties in HDR
environments come not only from the limitations of the sensors (conventional
cameras often take over/under-exposed images in such scenes), but also from
the bold assumptions of VO algorithms, such as brightness constancy. To over-
come these difficulties, two recent research lines have emerged respectively:
Active VO and Photometric VO. The former tries to provide the robustness
by controlling the camera parameters (gain or exposure time) [129] [155], while
the latter explicitly models the brightness change using the photometric model
of the camera [96] [49]. These approaches are demonstrated to improve robust-
ness in HDR environments. However, they require a detailed knowledge of the
specific sensor and a heuristic setting of several parameters, which cannot be
easily generalized to different setups.

In contrast to previous methods, we address this problem from a Deep
Learning perspective, taking advantage of the generalization properties to
achieve robust performance in varied conditions. Specifically, in this work, we
propose two different Deep Neural Networks (DNNs) that enhance monocular
images to more informative representations for VO. Given a sequence of im-
ages, our networks are able to produce an enhanced sequence that is invariant
to illumination conditions or robust to HDR environments and, at the same
time, contains more gradient information for better tracking in VO. For that,
we add the following contributions to the state of the art:

◦ We propose two different deep networks: a very deep model consisting of
both CNNs and LSTM, and another one of small size designed for less de-
manding applications. Both networks transform a sequence of RGB images
into more informative ones, while also being robust to changes in illumina-
tion, exposure time, gamma correction, etc.

◦ We propose a multi-step training strategy that employs the down-sampled
images from synthetic datasets, which are augmented with a set of trans-
formations to simulate different illumination conditions and camera param-
eters. As a consequence, our DNNs are capable of generalizing the trained
behavior to full resolution real sequences in HDR scenes or under difficult
illumination conditions.

◦ Finally, we show how the addition of Long Short Term Memory (LSTM)
layers helps to produce more stable and less noisy results in HDR sequences
by incorporating the temporal information from previous frames. However,
these layers increase the computational burden, hence complicating their
insertion into a real-time VO pipeline.
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We validate the claimed features by comparing the performance of two state-
of-art algorithms in monocular VO, namely ORB-SLAM [115] and DSO [49],
with the original input and the enhanced sequences, showing the benefits of
our proposals in challenging environments.

4.C.2 Related Work
To overcome the difficulties in HDR environments, works have been done to
improve the image acquisition process as well as to design robust algorithms
for VO.

Camera Parameter Configuration

The main goal of this line of research is to obtain the best camera settings (i.e.,
exposure, or gain) for image acquisition. Traditional approaches are based on
heuristic image statistics, typically the mean intensity (brightness) and the
intensity histogram of the image. For example, a method for autonomously
configuring the camera parameters was presented in [117], where the authors
proposed to setup the exposure, gain, brightness, and white-balance by pro-
cessing the histogram of the image intensity. Other approaches exploited more
theoretically grounded metrics. [100], employed the Shannon entropy to opti-
mize the camera parameters in order to obtain more informative images. They
experimentally proved a relation between the image entropy and the camera
parameters, then selected the setup that produced the maximum entropy.

Closely related to our work, some researchers tried to optimize the camera
settings for visual odometry. [129] defined an information metric, based on the
gradient magnitude of the image, to measure the amount of information in it,
and then selected the exposure time that maximized the metric. Recently, [155]
proposed a robust gradient metric and adjusted the camera setting according
to the metric. They designed their exposure control scheme based on the pho-
tometric model of the camera and demonstrated improved performance with
a state-of-art VO algorithm [53].

Robust Vision Algorithms

To make VO algorithms robust to difficult light conditions, some researchers
proposed to use invariant representations, while others tried to explicitly model
the brightness change. For feature-based methods, binary descriptors are ef-
ficient and robust to brightness changes. [115] used ORB features [126] in a
SLAM pipeline and achieved robust and efficient performance. Other binary
descriptors [95] [26] are also often used in VO algorithms. For direct meth-
ods, [13] incorporated binary descriptors into the image alignment process for
direct VO, and the resulting system performed robustly in low light.
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To model the brightness change, the most common technique is to use an
affine transformation and estimate the affine parameters in the pipeline. [79]
proposed an adaptive algorithm for feature tracking, where they employed an
affine transformation that modeled the illumination changes. More recently, a
photometric model, such as the one proposed by [38], is used to account for the
brightness change due to the exposure time variation. A method to deal with
brightness changes caused by auto-exposure was published in [96], reporting
a tracking and dense mapping system based on a normalized measurement
of the radiance of the image (which is invariant to exposure changes). Their
method not only reduced the drift of the camera trajectory estimation, but also
produced less noisy maps. [49] proposed a direct approach to VO with a joint
optimization of both the model parameters, the camera motion, and the scene
structure. They used the photometric model of the camera as well as the affine
brightness transfer function to account for the brightness change. In [155],
the authors also adapted a direct VO algorithm [53] with both methods and
presented an experimental comparison of using the affine compensation and
the photometric model of the camera.

To the best of our knowledge, there is little work on using learning-based
methods to tackle the difficulties in HDR environments. In the rest of the
paper, we will describe how to design networks for this task, the training
strategy and the experimental results.

4.C.3 Network Overview
In this work, we need to perform a pixel-wise transformation from monocular
RGB images in a way that the outputs are still realistic images, on which we
will further run VO algorithms. For pixel-wise transformation, the most used
approach is DNNs structured in the so-called encoder-decoder form. These type
of architectures have been successfully employed in many different tasks, such
as optical flow estimation [42], image segmentation [81], depth estimation [103],
or even to solve the image-to-image translation problem [75]. The proposed
architectures (see Figure 4.1), implemented in the Caffe library [77], consist of
an encoder, LSTM layers and a decoder, as described in the following.

Encoder

The encoder network consists of a set of purely convolutional layers that trans-
form the input image, into a more reduced representation of feature vectors,
suitable for a specific classification task. Due to the complexity of training from
scratch [142], a standard approach is to initialize the model with the weights
of a pre-trained model, known as fine-tuning. This has several advantages, as
models trained with massive amount of natural images such as VGGNet [132],
a seminal network for image classification, usually provide a good performance
and stability during the training. Moreover, as initial layers closer to the input
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(a) DNN model used in fine-tuning.

(b) Small-CNN trained from scratch.

Figure 4.1: Scheme of the architectures employed in this work. Both DNNs are
formed by an encoder convolutional network, and a decoder that forms the enhanced
output images. In the case of the fine-tuned network, we introduce a LSTM network
to produce temporally consistent sequences. These figures have been adapted from
[103,104].

image provide low-level information and final layers are more task-specific,
it is also typical to employ the first layers of a well-trained CNN for differ-
ent purposes, i.e. place recognition [64]. This was also the approach in [104],
where authors employed the first 8 layers of VGGNet to initialize their net-
work, keeping their weights fixed during training, while the remaining layers
were trained from scratch with random initialization. Therefore, in this work,
we first fine-tuned the very deep model in [104], depicted in Figure 4.1(a).

However, since our goal is to estimate the VO with the processed sequences,
a very deep network, such as the fine-tuned model, is less suitable for usual
robotic applications, where the computational power must be saved for the
rest of modules. Moreover, depth estimation requires a high level of semantic
abstraction as it needs some spatial reasoning about the position of the objects
in the scene. In contrast, VO algorithms are usually based on tracking regions
of interest in the images, which largely relies on the gradient, i.e., the first
derivatives of the images, information that it is usually present in the shallow
layers of CNNs. Therefore, we also propose a smaller and less deep CNN to
obtain faster performance, whose encoder is formed by three layers (dimensions
are in Figure 4.1(b)), each one of them formed by a convolution with a 5×5
kernel, followed by a batch-normalization layer [74] and a pooling layer.
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Long Short Term Memory (LSTM)

While it is feasible to use a feedforward neural network to increase the in-
formation in images for VO, the input sequence may contain non-ignorable
brightness variation. More importantly, the brightness constancy is not en-
forced in a feedforward network, hence the output sequence is expected to
break the brightness constancy assumption for many VO algorithms. To over-
come this, we can exploit the sequential information to produce more stable
and temporally consistent images, i.e. reducing the impact of possible illumi-
nation change to ease the tracking of interest points. Therefore, we exploit the
Recurrent Neural Networks (RNNs), more specifically, the LSTM networks
first introduced in [71]. In these networks, unlike in standard CNNs where
the output is only a non-linear function f of the current state yt = f(xt), the
output is also dependent on the previous output:

yt = f(xt,yt−1) (4.1)

as the layers are capable of memorizing the previous states. We introduce two
LSTM layers in the fine-tuned network between the encoder and the decoder
part, in order to produce more stable results for a better odometry estimation.

Decoder

Finally, the decoder network is formed by three deconvolutional layers, each
of them formed by an upsampling, a convolution and a batch-normalization
layer, as depicted in Figure 4.1. The deconvolutional layers increase the size
of the intermediate states and reduce the length of the descriptors.

Typically, decoder networks produce an output image of a proportional size
of the input one containing the predicted values, which is in general blurry
and noisy thus not very convenient to be used in a VO pipeline. To overcome
this issue, we introduce an extra step which merges the raw output of the
decoder with the input image producing a more realistic image. For that, we
concatenate both the input image in grayscale and the decoder output into a
2-channel image then applying a final convolutional filter with a 1× 1 kernel
and one channel.

4.C.4 Training the DNN
Our goal is to produce an enhanced image stream to increase the robust-
ness/accuracy of visual odometry algorithms under challenging situations. Un-
fortunately, there is no ground-truth available for generating the optimal se-
quences, nor direct measurement that indicates the goodness of an image for
VO. To overcome this difficulties, we observe that the majority of the state-of-
art VO algorithms, both direct and feature-based approaches, actually exploit
the gradient information in the image. Therefore, we aim to train our network
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(a) Reference (b) Dark conditions

(c) Daylight (d) Over-exposition

Figure 4.2: Some training samples from the Urban dataset proposed in [104], for
which we have simulated artificial illumination and exposure conditions by post-
processing the dataset with different contrast and gamma levels.

to produce images containing more gradient information. In this section, we
first introduce the dataset used for training then our training strategy.

Datasets

To train the network, we need images taken at the same pose but with differ-
ent illuminations, which are unfortunately rarely available in real-world VO
datasets. Therefore we employed synthetic datasets that contain changes in
the illumination of the scenes. In particular, we used the well-known New
University of Tsukuba dataset [120] and the Urban Virtual dataset generated
by [104], consisting of several sequences from an artificial urban scenario with
non-trivial 6-DoF motion and different illumination conditions. In order to
increase the amount of data, we simulated 12 different camera and illumina-
tion conditions (see Figure 4.2) by using several combinations of Gamma and
Contrast values. Notice that this data augmentation must contain an equally
distributed amount of conditions, otherwise the output of the network might
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be biased to the predominant case. To select the best image y∗ (with the most
gradient information), we use the following gradient information metric:

g(y) =
∑
ui

‖∇y(ui)‖2 (4.2)

which is the sum of the gradient magnitude over all the pixels ui in the image
y. For training the CNN, we used RGB images of 256×160 pixels in the case of
fine-tuning the model in [104] and grayscale images of 160×120 pixels for the
reduced network. We trained the LSTM network with full-resolution images
(752×480) as, unlike convolutional layers, once trained they cannot be applied
to inputs of different size.

Training the CNN

We first train without LSTM, with the aim of obtaining a good CNN (en-
coder-decoder) capable of estimating the enhanced images from individual (not
sequential) inputs. This part of training consists of two stages:

4.C.4.1 Pre-training the Network

In order to obtain a good and stable initialization, we first train the CNN with
pairs of images at the same pose, consisting of the reference image y∗ and an
image with different appearance. On our first attempts, we tried to optimize
directly the bounded increments of the gradient information (4.2). The results
are very noisy, due to the high complexity of the pixel-wise prediction problem.
Instead, we opted to train the CNN by imposing the output to be similar to
the reference image, in a pixel-per-pixel manner. For that, we employed the
logarithmic RMSE, which is defined for a given reference y∗ and an output y
image as:

L(y,y∗) =
√

1
N

∑
i

‖log yi− log y∗i ‖
2 , (4.3)

where i is the pixel index in the images. Although we tried different strategies
for this purpose, such as the denoising autoencoder [145], we found this loss
function much more suitable for VO applications, as it produced a smoother
result than the Euclidean RMSE, specially for bigger errors, hence easing the
convergence process. This first part of the training was performed with the
Adam solver [85], with a learning rate l = 0.0001 for 20 epochs of the training
data, and a dataset formed by 80k pairs and requiring about 12 hours on a
NVIDIA GeForce GTX Titan.

4.C.4.2 Imposing Invariance

Once a good performance with the previous training was achieved, we trained
the CNN to obtain invariance to different appearances. The motivation is that,



102
CHAPTER 4. DEALING WITH DYNAMIC ILLUMINATION AND HDR

ENVIRONMENTS

for images with different appearances (i.e. brightness) taken at the same pose,
the CNN should be able produce the same enhanced image. For that, we se-
lected triplets of images from the Urban dataset, by taking the reference image
y∗, and another two images y1 and y2 from the same place with two different
illuminations. Then, we trained the network in a siamese configuration, for
which we again imposed both outputs to be similar to the reference one. In
addition, we introduced the following loss function:

LSSIM (y1,y2,y∗) = SSIM(y1,y2) (4.4)

which is the structural similarity (SSIM) [148], usually employed to measure
how similar two images are. This second part of the training was performed,
during 10 epochs of the training data (40k triplets), requiring about 6 hours
of training with the same parameters as in previous Section.

Training the LSTM network

After we obtain a good CNN, the second part of the training is designed to
increase the stability of the outputs, given that we are processing sequences of
consecutive images. The goal is to provide not only more meaningful images,
but also fulfill the brightness constancy assumption. For that purpose, we
trained the whole DNN, including the LSTM network, with sequences of two
consecutive images (i.e., taken at consecutive poses on a trajectory) under
slightly different illumination conditions, while the reference ones presented
the same brightness. The loss function consists of the LogRMSE loss function
(4.3) to ensure that both outputs are similar to their respective reference ones,
and the SSIM loss (4.4) without the structural term (as images do not belong
to the exact same place) between the two consecutive outputs to ensure that
they have a similar appearance. The LSTM training was performed during 10
epochs of the data (40k triplets), in about 12 hours with the same parameters
as in previous Section.

4.C.5 Experimental Validation
In this section, we evaluate the performance of our approach by measuring two
different metrics: the increments of gradient magnitude in the processed im-
ages and the improvements in accuracy and performance of ORB-SLAM [115]
and DSO [49], two state-of-art VO algorithms for both feature-based and di-
rect approaches, respectively. For that, we first run the VO experiments with
the original image sequence, several standard image processing approaches, i.e.
Normalization (N), Global Histogram Equalization (G-HE) [127], and Adap-
tative Histogram Equalization (A-HE) [158]. Then, we also evaluate the VO
algorithms with the image sequences produced with the trained networks: the
fine-tuned approaches FT-CNN and FT-LSTM, and the reduced model trained
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Figure 4.3: Outputs from the trained models and difference between the gradient
images in some challenging samples extracted from the evaluation sequences (the
scale for the jet colormap remains fixed for each row).

from scratch Small-CNN. Notice that, even though the CNN networks pro-
posed in this paper (not the FT-LSTM) have been trained only with synthetic
images with reduced size (256× 180 and 160× 120 pixels for the fine-tuned
and our proposal respectively), the experiments have been performed with
full-resolution (752×480 pixels) and real images.

Gradient Inspection

As stated before, one way of measuring the quality of an image is its amount of
gradient. Unfortunately, there is no standard metric for measuring the gradient
information; actually, it is highly dependent on the application. In the case of
visual odometry, it is even more important, as most approaches are based on
edge information (which is directly related to the gradient magnitude image).
Figure 4.3 presents the estimated images and the difference between the gra-
dients of the output and the input images for several images from the trained
models in different datasets. For the representation we have used the colormap
jet, i.e. from blue to red, with ±30 units of range (negative values indicate a
decrease of the gradient amount). In general, we observe a general tendency
in all models to reduce the gradient amount in the most exposed parts of
the camera as they are less informative due to the sensor saturation, while
increasing the gradient in the rest of the image.
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Evaluation with state-of-art VO algorithms

Table 4.1: ORB-SLAM [115] average RMSE errors (% first row) normalized by the
length of the trajectory and percentage of the sequence without loosing the tracking
(second row). A dash means that the VO experiment failed without initializing.
Dataset ORB-SLAM [115] N G-HE A-HE FT-CNN FT-LSTM Small-CNN

1-light 3.91 4.07 - - 3.52 3.49 4.62
24.80 26.98 - - 23.84 25.32 80.52

2-lights 2.19 2.17 - 2.27 2.07 2.09 2.72
68.92 68.76 - 65.88 70.94 72.98 68.76

3-lights 3.78 3.81 - 3.63 3.52 3.81 3.65
100.00 100.00 - 100.00 100.00 100.00 100.00

switch 3.60 4.85 - 4.56 5.64 2.66 2.97
13.76 24.98 - 8.84 7.32 31.02 21.62

hdr1 5.67 5.67 3.71 - 5.22 5.21 4.77
74.30 76.6 49.36 - 81.54 81.14 78.76

hdr2 3.49 4.08 4.42 3.52 3.42 3.88 3.51
74.86 70.50 34.12 25.3 74.52 71.02 75.22

overexposed 2.64 2.57 2.59 2.53 2.72 2.65 2.83
100.00 100.00 100.00 100.00 100.00 100.00 100.00

bright-switch 3.13 3.08 2.03 3.10 1.97 2.02 1.95
34.60 34.94 100.00 35.42 100.00 100.00 100.00

low-texture - - - - 5.28 - -
- - - - 39.08 - -

Table 4.2: DSO [49] average RMSE errors normalized by the length of the trajectory
for each method and trained network when evaluating. A dash means that the VO
experiment failed.
Dataset DSO [49] N G-HE A-HE FT-CNN FT-LSTM Small-CNN
1-light 2.39 - 2.37 2.42 2.36 2.36 2.40
2-lights 2.12 - 2.05 2.12 2.12 2.15 2.14
3-lights 2.65 - 2.66 2.66 2.66 2.69 2.69
switch - - - - 4.38 4.39 2.90
hdr1 2.46 4.80 2.34 2.52 2.42 2.17 2.44
hdr2 1.28 - 1.59 3.17 1.23 1.22 2.57
overexposed 1.61 1.60 1.64 1.62 1.58 1.58 1.60
bright-switch 4.51 - 1.49 1.47 1.93 1.73 4.43
low-texture 3.22 2.67 2.76 3.22 3.22 3.14 3.21

In order to evaluate the trained models in challenging conditions, we recorded
9 sequences with a hand-held camera in a room equipped with an OptiTrack
system that allows us to also record the ground-truth trajectory of the camera
and evaluate quantitatively the results. Each sequence was recorded for sev-
eral illumination conditions: first with 1−3 lights available in the room, then
without any light, and finally by switching the lights on and off during the
sequence. It is worth noticing that, despite the numerous public benchmarks
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Table 4.3: Average runtime and memory usage for each network
DNN Res. (pixels) Memory GPU

FT-CNN 256 × 180 371 MiB 23.80 ms
FT-CNN 756 × 480 1175 MiB 149.72 ms
FT-LSTM 756 × 480 3897 MiB 275.24 ms
Small-CNN 160 × 120 135 MiB 4.77 ms
Small-CNN 756 × 480 373 MiB 48.4 ms

available for VO, they are usually recorded in good and static illumination
conditions, therefore our approach barely improves the trajectory estimation.

Table 4.1 shows the results of ORB-SLAM in all the sequences mentioned
above. Firstly, we observe the benefits of our approach as our methods clearly
outperform the original input and the standard image processing approaches
in the difficult sequences (1-light and switch), while also maintaining a sim-
ilar performance in the easy ones (2-lights and 3-lights). As for the different
networks, we clearly observe the better performance of FT-LSTM in the dif-
ficult sequences, although the reduced approach Small-CNN reports a good
performance in the scene with the switching lights.

The results obtained with DSO are represented in Table 4.2. Since all the
methods were successfully tracked, we omit the tracking percentage. In terms
of accuracy, we again observe the good performance of the reduced approach,
Small-CNN, with the direct approach. However, its accuracy is worse in the
bright-switch sequence but it still performs similar to the original sequence.

Computational Cost

Finally, we evaluate the computational performance of the two trained net-
works. For that, we compare the performance of the CNN and the LSTM,
for both the training and the runtime image resolutions. All the experiments
were run on a Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz and 8GB RAM,
and an NVIDIA GeForce GTX Titan (12GB). Table 4.3 shows the results of
each model and all possible resolutions. We first observe that while obtaining
comparable results to the fine-tuned model, the small CNN can perform faster
(a single frame processing takes 3 times less than with FT-CNN and up to 5
times less than FT-LSTM for the resolution 756×480 ), and therefore is the
closest configuration to a direct application in a VO pipeline. It is also worth
noticing the important impact of the LSTM layers in the performance, because
they not only require a high computational burden but also double the size of
the encoder network (a consecutive image pair is needed).
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4.C.6 Conclusions
In this work, we tackled the problem of improving the robustness of VO sys-
tems under challenging conditions, such as difficult illuminations, HDR envi-
ronments, or low-textured scenarios. For that, we solved the problem from a
deep learning perspective, for which we proposed two different architectures, a
very deep model that is capable of producing temporally consistent sequences
due to the inclusion of LSTM layers, and a small and fast architecture more
suitable for VO applications. We propose a multi-step training employing only
reduced images from synthetic datasets, which are also augmented with a set
basic transformations to simulate different illumination conditions and cam-
era parameters, as there is no ground-truth available for our purposes. We
then compare the performance of two state-of-art algorithms in monocular
VO, ORB-SLAM [115] and DSO [49], when using the normal sequences and
the ones produced by the DNNs, showing the benefits of our proposals in
challenging environments.
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Geometric-based Line Segment
Tracking for HDR Stereo Sequences

Ruben Gomez-Ojeda, Javier Gonzalez-Jimenez

Abstract
In this work, we propose a purely geometrical approach for the
robust matching of line segments for challenging stereo streams
with severe illumination changes or High Dynamic Range (HDR)
environments. To that purpose, we exploit the univocal nature of
the matching problem, i.e. every observation must be corresponded
with a single feature or not corresponded at all. We state the prob-
lem as a sparse, convex, `1-minimization of the matching vector
regularized by the geometric constraints. This formulation allows
for the robust tracking of line segments along sequences where tra-
ditional appearance-based matching techniques tend to fail due to
dynamic changes in illumination conditions. Moreover, the pro-
posed matching algorithm also results in a considerable speed-up
of previous state of the art techniques making it suitable for real-
time applications such as Visual Odometry (VO). This, of course,
comes at expense of a slightly lower number of matches in com-
parison with appearance-based methods, and also limits its appli-
cation to continuous video sequences, as it is rather constrained to
small pose increments between consecutive frames. We validate the
claimed advantages by first evaluating the matching performance
in challenging video sequences, and then testing the method in a
benchmarked point and line based VO algorithm.

4.D.1 Introduction
Although appearance-based tracking has reached a high maturity for feature-
based motion estimation, its robustness in real-world scenarios is still an open
challenge. In this work, we are particularly interested in improving the ro-
bustness of visual feature tracking in sequences including severe illumination
changes or High Dynamic Range (HDR) environments (see Figure 4.4). Under
these circumstances, traditional descriptors based on local appearance, such
as ORB [126] and LBD [154] for points and line segments, respectively, tend
to provide many outliers and a low number matches, and hence jeopardizing
the performance of the visual tracker.

We claim that line segments can be successfully tracked along video se-
quences by only considering their geometric consistency along consecutive
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(a) LSD [147] + LBD [154] (b) LSD [147] + Our proposal

Figure 4.4: Pair of consecutive frames extracted from the sequence hdr/flicker1
from the dataset in [96] under challenging illumination changes. Our approach allows
for the robust tracking of line segments in this type of environments, where traditional
appearance-based matching techniques tend to fail.

frames, namely, the oriented direction in the image, the overlap between them,
and the epipolar constraints. To achieve robust matches from this reduced
segment description we need to introduce some mechanism to deal with the
ambiguity associated to such purely geometrical line matching.

For that, we state the problem as a sparse, convex `1-minimization of the
geometrical constraints from any line segment in the first image over all the
candidates in the second one, within a one-to-many scheme. This formulation
allows for the successful tracking of line segments as it only accepts matches
that are guaranteed to be globally unique. In addition, the proposed method
results in a considerable speed-up of the tracking process in comparison with
traditional appearance based methods. For this reason we believe this method
can be a suitable choice for motion estimation algorithms intended to work in
challenging environments, even as a recovery stage when traditional descriptor-
based matching fails or does not provide enough correspondences.

To deal with outliers we impose some requiring constraints (e.g. small base-
line between the two consecutive images) which slightly reduce the effectiveness
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of line matching in scenes with repetitive structures and also the number of
tracked features.

In summary, the contributions of this paper are the following:

◦ A novel technique for the tracking of line segments along continuous se-
quences based on a sparse, convex `1-minimization of geometrical constraints,
hence allowing for robust matching under severe appearance variations (see
Figure 4.4).

◦ A efficient implementation of the proposed method yielding a less compu-
tationally demanding line-segment tracker which reduces one of the major
drawbacks of working with these features.

◦ Its validation in our previous point and line features stereo visual odom-
etry system [62], resulting in a more robust VO system under difficult il-
lumination conditions, and also reducing the computational burden of the
algorithm.

These contributions are validated with extensive experimentation in several
datasets from a wide variety of environments, where we first compare the
accuracy and precision of the proposed tracking technique, and then show its
performance alongside a VO framework.

4.D.2 Related Work
Feature-based motion reconstruction techniques, e.g. VO, visual SLAM, or
SfM, are typically addressed by detecting and tracking several geometrical
features (over one or several frames) and then minimizing the reprojection
error to recover the camera pose. In this context, several successful approaches
have been proposed, such as PTAM [88], a monocular SLAM algorithm that
relies on FAST corners and SSD search over a predicted patch in a coarse-to-
fine scheme for feature tracking. More recently, ORB-SLAM [116] contributed
with a very efficient and accurate SLAM system based on a very robust local
bundle adjustment stage thanks to its fast and continuous tracking of keypoints
for which they relied on ORB features [126]. Unfortunately, even-though binary
descriptors are relatively robust to brightness changes, these techniques suffer
dramatically when traversing poorly textured scenarios or severe illumination
changes occur (see Figure 4.4), as the number of tracked features drops.

Some works try to overcome the first situation by combining different
types of geometric features, such as edges [47], edgelets [54], lines [18], or
planes [102]. The emergence of specific line-segment detectors and descrip-
tors, such as LSD [147] and LBD [154] allowed to perform feature tracking
in a similar way as traditionally done with keypoints. Among them, in [90]
authors proposed a stereo VO algorithm relying on image points and seg-
ments for which they implement a stereo matching algorithm to compute the
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disparity of several points along the line segment, thus dealing with partial
occlusions. In [62] we contribute with a stereo VO system (PLVO) that prob-
abilistically combines ORB features and line segments extracted and matched
with LSD and LBD by weighting each observation with their inverse covari-
ance. In the SLAM context, the work in [151] proposes two different represen-
tations: Plücker line coordinates for the 3D projections, and an orthonormal
representation for the motion estimation, however, they track features through
an optical flow technique, thus the performance with fast motion sequences de-
teriorates. Unfortunately, the benefits of employing line segments come at the
expense of higher difficulties in dealing with them (and they require a high
computational burden in both detection and matching stages), and, more im-
portantly, they still suffer from the same issues as keypoints when working
with HDR environments.

A number of methods for dealing with varying illumination conditions have
been reported. For example, [49] proposed a direct approach to VO, known as
DSO, with a joint optimization of both the model parameters, the camera mo-
tion, and the scene structure. They used the photometric model of the camera
as well as the affine brightness transfer function to account for the brightness
change. In [155] authors contributed a robust gradient metric and adjusted
the camera setting according to the metric. They designed their exposure con-
trol scheme based on the photometric model of the camera and demonstrated
improved performance with a state-of-art VO algorithm [53]. Recently, [66]
proposed a deep neural network that embeds images into more informative
ones, which are robust to changes in illumination, and showed how the addi-
tion of LSTM layers produces more stable results by incorporating temporal
information to the network. Although those approaches have proven to be ef-
fective to moderate changes in illumination or exposure, they would still suffer
in more challenging scenarios such as the one in Figure 4.4.

4.D.3 Geometric-based Line Segment Tracking
Problem Statement

The first stage of our segment matching algorithm takes as input a pair of
images from a stereo video sequence, I1 and I2, which can be either from the
stereo pair or two consecutive ones in the sequence. Let us define the sets of
line segments L1 = {si, ei | i ∈ 1, ...,m} and L2 = {sj , ej | j ∈ 1, ...,n} in I1 and
I2, where we represent the line segment k by their endpoints sk and ek in
homogeneous coordinates. We also employ the vector of the line

~lk = sk−ek
‖sk−ek‖2

(4.5)

estimated from the segment endpoints to compare the geometric features of
each of them.
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Then, given L1 and L2, our aim is to find the subset of corresponding line
segments between the two input images (see Figure 4.6), defined as M12 =
{(li, lj) | li ∈ L1 ∧ lj ∈ L2}. For li and lj to be a positive match, they must be
parallel, have a sufficient ovelap and be compliant with the epipolar geometry
of the two views. In order to impose the lines to be parallel, we consider the
angle formed by the two line segments in the image plane, θij :

θij = atan( ||~li×~lj || /~li ·~lj ). (4.6)

The above-mentioned expressions, however, might lead to inconsistent re-
sults as any line in the image could satisfy Equation (4.6) without being related
to the query one. Therefore, we deal with this phenomena by also defining the
overlap of two line segments ρij ∈ [0,1] as the ratio between their common
parts, as depicted in Figure 4.5, where ρij equals 0 and 1 when there is none
or full overlapping between the line segments, respectively. In addition, we also
define the ratio between the line lengths as:

µij = max(Li,Lj)
min(Li,Lj)

(4.7)

where Lk = ‖sk−ek‖2 stands for the length of the k-th line, which discards
any likely pair of segments whose lengths are not similar enough (if they are of
similar length the value of µij is close to one, and bigger than one otherwise).

Finally, we also consider epipolar geometry as a possible constraint for the
two different cases of study. In the first case, stereo matching, we define the
angle formed by the middle point flow vector, xij =mi−mj where the middle
point is defined as mk = (sk+ek)/2, as:

θstij = asin(‖xij×η1‖/‖xij‖) (4.8)

where η1 stands for the director vector of the X direction. In contrast, in the
frame-to-frame case, we assume that images are separated by a small motion
and therefore we define the angle formed by xij and the Y direction (whose
unit vector is given by η2), namely:

θffij = asin(‖xij×η2‖/‖xij‖). (4.9)

Sparse `1-Minimization for Line Segment Tracking

In this paper, we formulate line-segment tracking as a sparse minimization
problem solely based on the previously introduced geometric constraints. Al-
though this representation has been already employed in computer vision
for noise reduction [48], face recognition [30], and loop closure detection [93]
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Figure 4.5: Scheme of the line segment overlap for both the stereo and frame-to-
frame cases. In the bottom image tk we plot the stereo overlap between the reference
line in the left image li and a match candidate in the right one lRj , which is the
ratio of the lengths of the shadowed areas (in blue the overlap and in green the line’s
length). Similarly, the above image tk+1 depicts the overlap between the reference
line in the second image lk and the projected line in the second frame lprevi .

(among others), to the best of our knowledge this is the first time it is em-
ployed for the geometric tracking of line segment features. For that, we also
take advantage of the 1-sparse nature of the tracking problem, i.e. a single line
li from the first image should only have at most one match candidate from
the L2 set. It must be noticed that, in the case of detecting divided lines, it
is possible for more than one line to match the query one, however, this case
is even more likely to occur with appearance based methods, as any locally
similar line in the image can be a candidate.

Let us define the n-dimensional matching vector ωi of the line li ∈ L1 as:

ωi =
[
ωi0 ... ωij ... ωin

]> (4.10)

where ωij equals one if li and lj are positive matches and zero otherwise,
and n stands for the number of line segments in L2. Moreover, we define the
line segment error vectors βij and the objective b for both the stereo and
frame-to-frame cases as:

βij =


θij
θepipij

ρij
µij

 , b =


0
0
1
1

 (4.11)

for the line segments li ∈ L1 and lj ∈ L2, where epip refers to the epipolar
constraints defined in Equations (4.8) and (4.9) for the two cases of study.
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Now, by concatenating all line segment error vectors we form the 4×n
matrix Ai:

Ai =
[
βi0, ... βij , ... βin

]
. (4.12)

that must satisfy the linear constraint Aiωi = b if the sum over all the com-
ponents from the matching vector ωi is one (which is our hypothesis). While
`2-norm is usually employed to solve the previous problem with the typical
least-squares formulation, it is worth noticing that it leads to a dense rep-
resentation of the optimal ω∗i , which contradicts the 1-sparse nature of our
solution.

In contrast, we can formulate the problem of finding lj ∈ L2 that properly
matches li ∈ L1 as a convex, sparse, constrained `1-minimization as follows:

min
ωi
‖ωi‖1 subject to ‖Aiωi−b‖2 ≤ ε (4.13)

where the constraint corresponds to the above-mentioned geometrical condi-
tions, and ε > 0 is the maximum tolerance for the constraint error. Moreover,
the problem in Equation (4.13) can be also solved with the homotopy ap-
proach [14] in the following unconstrained manner:

min
ωi

λ‖ωi‖1 + 1
2 ‖Aiωi−b‖2 (4.14)

with λ a weighting parameter empirically set to 0.1, resulting in a very effective
and fast solver [41].

Then, we efficiently solve the problem in Equation (4.14) for each li ∈ L1
obtaining the sparse vector ωi, which after being normalized indicates whether
the line segment li has a positive match (in the maximum entry j of ωi).
Finally, we guarantee that line segments are uniquely corresponded by only
considering the candidate with minimum error, defined as

∥∥βij∥∥, if the error
for the second best match is at least 2 times bigger than the best one. For
further details on the mathematics of this Section, please refer to [14].

Dealing with Outliers

When dealing with repetitive structures a number of outliers can appear. To
deal with this problem in the stereo case, we implement a filter based on the
epipolar constraint, for which we first estimate robustly the normal distri-
bution formed by the angles with the horizontal direction. Then, we discard
the matches whose angle with the horizontal direction lies above 2 times the
standard deviation of the distribution formed by all matches.

In the frame-to-frame case, as the camera pose is not known yet, we cannot
directly apply epipolar geometry. However, we approximate an epipolar filter,
based on the assumption that input images belong to consecutive frames from
a sequence, and therefore they are separated by small motions. For that, we
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(a) LSD [147] + LBD [154]

(b) LSD [147] + Our proposal

Figure 4.6: Stereo correspondences between two different images from the Eu-
RoC dataset. Our matching algorithm is capable of finding matches that does not
necessarily have similar appearance.

discard the matches whose angle with the vertical direction (this is the epipolar
constraint in the case of null motion) lies above 2 times the standard deviation
of the distribution formed by all matches as they are less likely to fullfil the
motion constraints.

4.D.4 Point-Segment Visual Odometry Overview
In this section we briefly describe the PLVO stereo visual odometry sys-
tem [62] where the proposed matching algorithm has been integrated for
line segment tracking. PLVO combines probabilistically both point and line
segment features and its C++ implementation is available publicly https:
//github.com/rubengooj/StVO-PL.

4.D.4.1 Point Features

In PLVO points are detected and described with ORB [126] (consisting of a
FAST keypoint detector and a BRIEF descriptor) due to its efficiency and good
performance. In order to reduce the number of outliers, we only consider the
measurements that are mutual best matches, and also check that the two best
matches are significantly separated in the description space by only accepting
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matches whose distance between the two closest correspondences is above the
double of the distance to the best match.

4.D.4.2 Line Segment Features

In our previous work [62] we detect line segments with the Line Segment
Detector (LSD) [147] and also employ the Line Band Descriptor (LBD) [154]
for the stereo and frame-to-frame matching. Although this method provides
a high precision and repeatability, it still presents very high computational
requirements, simple detection and matching requires more than 30ms with
752×480, thus its use limits their application in real-time. In order to reduce
the computational burden of the Stereo VO system, in this work we have also
employed the Fast Line Detector (FLD) [94], which is based on connecting
collinear Canny edges [27]. This detector works faster than LSD at expense of
a poorer performance in detecting meaningful lines, i.e. lines with strong local
support along all the lines, since, unlike LSD, detection is only based on image
edges.

4.D.4.3 Motion Estimation

After obtaining a set of point and line correspondences, we then recover the
camera motion with iterative Gauss-Newton minimization of the projection
errors in each case (in the case of line segments we employ the distance from the
projected endpoint, to the line in the next frame). To mitigate the undesirable
effect of outliers and noisy measurements, we perform a two steps minimization
for which we weight the observations with a Pseudo-Huber loss function, and
then we remove the outliers and refine the solution.

4.D.5 Experimental Validation
We evaluate the performance and robustness of our proposal in several pub-
lic datasets for two different line segment detectors, LSD [147] and FLD [94],
when employing two different matching strategies: our proposal, and tradi-
tional appearance based tracking with LBD [154]. All the experiments have
run on an Intel Core i7-3770 CPU @ 3.40 GHz and 8GB RAM without GPU
parallelization. In our experiments we have employed a fixed number of de-
tected lines set to 100, and 600 ORB [126] features for the case of points and
line based VO.

Tracking Performance

First, we compare the line segment tracking performance of our proposal
against traditional feature matching approaches. For that, we took several
sequences (at different speeds) and classified each match as an inlier if the
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Table 4.4: Tracking performance of our proposal and traditional line segment feature
matching (number of matches - inliers).
Dataset Resolution LSD + LBD LSD + L1 FLD + LBD FLD + L1

hdr/bear 640×480 72 80 % 39 94 % 65 73 % 45 86 %
hdr/desk 640×480 70 84 % 40 93 % 60 83 % 41 88 %
hdr/floor1 640×480 27 77 % 22 85 % 29 77 % 33 85 %
hdr/floor2 640×480 71 80 % 42 93 % 61 80 % 41 87 %
hdr/sofa 640×480 58 81 % 41 90 % 49 81 % 45 84 %
hdr/whiteboard 640×480 41 76 % 35 95 % 42 75 % 35 90 %
hdr/flicker1 640×480 42 84 % 45 98 % 44 80 % 40 95 %
hdr/flicker2 640×480 86 89 % 45 98 % 74 85 % 45 97 %
dnn/1-light 752×480 16 94 % 15 100 % 19 90 % 18 100 %
dnn/2-lights 752×480 29 94 % 18 100 % 38 92 % 24 97 %
dnn/3-lights 752×480 49 90 % 35 100 % 57 91 % 35 97 %
dnn/change-light 752×480 19 85 % 14 100 % 24 95 % 18 100 %
dnn/hdr1 752×480 55 90 % 35 100 % 51 88 % 35 95 %
dnn/hdr2 752×480 50 90 % 32 97 % 52 93 % 39 95 %
dnn/overexp 752×480 84 94 % 55 98 % 75 92 % 47 96 %
dnn/overexp-change-light 752×480 82 92 % 50 98 % 72 90 % 43 96 %
dnn/low-texture 752×480 53 88 % 35 100 % 52 90 % 35 97 %
dnn/low-texture-rot 752×480 43 90 % 30 100 % 40 90 % 30 95 %
tsukuba 640×480 43 86 % 34 84 % 36 75 % 21 86 %
tsukuba/fluor(L)-daylight(R) 640×480 5 40 % 15 80 % 5 40 % 12 80 %
tsukuba/fluor(L)-flashlight(R) 640×480 2 33 % 5 60 % 2 50 % 4 50 %
tsukuba/fluor(L)-lamps(R) 640×480 1 0 % 5 60 % 1 0 % 3 67 %

correspondent line segment projection error is less than one pixel when em-
ploying the groundtruth transformation. In order to compare the algorithms
under dynamic illumination changes, we have employed two specific datasets:
one extracted from [96] (hdr) taken with an RGB-D sensor under HDR situa-
tions, and another one from our previous work [66] (dnn) containing a number
of difficult dynamic illumination conditions. In addition, we also have em-
ployed the Tsukuba Stereo Dataset [120] , a synthetic dataset rendered under
4 different illuminations, i.e. fluorescent, lamps, flashlight, and daylight. For a
more challenging set of experiments, we have also employed to use all combi-
nations (taking fluorescent as reference) of the rendered sequences, by setting
the left one to the reference and the right one to all different possibilities. It
is worth noticing that illumination changes from the considered datasets are
produced punctually, and after that, the scene illumination usually keeps con-
stant until the next change. This benefits to descriptor-based techniques when
evaluating the tracking performance during the whole sequence, for which we
also recommend to watch the attached video for visual evaluation under such
circumstances.

Table 4.4 shows the tracking accuracy and the number of features tracked,
for all the sequences from each considered dataset. First, we observe a slightly
inferior performance of FLD [94] in comparison against LSD [147], due to its
lower repeatability in contrast with its superior computational performance
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Table 4.5: Relative RMSE errors in the EuRoC MAV dataset [23].
Sequence LVO (FLD) LVO-L1 (FLD) LVO (LSD) LVO-L1 (LSD)

MH-01-easy 0.0641 0.0788 0.0669 0.0716
MH-02-easy 0.0826 0.0923 0.0740 0.0881
MH-03-med 0.0886 0.1011 0.0898 0.1004
MH-04-diff 0.1500 0.1536 0.1429 0.1518
MH-05-diff 0.1350 0.1529 0.1391 0.1561
V1-01-easy 0.0890 0.0969 0.0876 0.0954
V1-02-med 0.0662 0.0847 0.0606 0.0947
V1-03-diff 0.2261 0.1518 0.0765 0.1103
V2-01-easy 0.1980 0.1868 0.1662 0.1898
V2-02-med 0.1634 0.2294 0.1982 0.2562
V2-03-diff 0.2329 0.2342 0.2354 0.2275
MH-01-easy* 0.0787 0.0897 0.0741 0.0728
MH-02-easy* 0.0873 0.1015 0.8237 0.0981
MH-03-med* 0.0982 0.1578 0.0916 0.1141
MH-04-diff* 0.1540 0.1780 0.1354 0.1621
MH-05-diff* - 0.1603 - 0.1863
V1-01-easy* 0.0880 0.1011 0.0997 0.1041
V1-02-med* 0.0858 0.0953 0.0713 0.1096
V1-03-diff* - 0.2087 - 0.1598
V2-01-easy* - 0.2396 - 0.2080
V2-02-med* - 0.2472 - 0.2563
V2-03-diff* - - - 0.2631

(see Table 4.6). In general, we observe that our matching method decreases
the number of features, due to the very requiring assumptions of our matching
technique, however, it provides a higher ratio of inliers thanks to the extra
stage explained in Section 4.D.3.

As for the Tsukuba dataset, we observe that the number of features suc-
cessfully tracked dramatically decreases as the response of the detectors is not
capable of producing a compatible set of lines from the same images. However,
we observe that our method technique is capable of recovering more matches,
specially in the less challenging case (fluorescent and daylight), that can be
employed along different sensing to extract more information from the envi-
ronment in such difficult situations.

Robustness Evaluation in Stereo Visual Odometry

In this set of experiments, we test the performance of the compared algorithms
in the EuRoC [23] dataset. In order to simulate changes in exposure time or il-
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Table 4.6: Comparison of the computational performance of the different considered
algorithms.

Monocular Tracking Stereo Tracking

LSD + LBD 39.342 ms 51.347 ms
LSD + Our 25.897 ms 35.828 ms
FLD + LBD 18.147 ms 33.266 ms
FLD + Our 7.654 ms 23.445 ms

lumination within the EuRoC dataset [23] (we will refer to simulated sequences
with an asterisk) we change the gain and bias of the image with two uniform
distribution, i.e. α = U(0.5,2.5) and β = U(0,20) pixels every 30 seconds. For
that comparison, we not only focus in the accuracy of the estimated trajecto-
ries, but also in the robustness of the algorithms under different environment
conditions (we mark a dash those experiments where the algorithm lose the
track). We compare the accuracy of trajectories obtained with our previous
stereo VO system, PLVO [62], against our proposal tracking strategy, PLVO-
L1, when employing LSD or FLD features. Table 4.5 contains the results by
computing the relative RMSE in translation for the estimated trajectories. As
we can observe, in the raw dataset our approach performs slightly worse than
standard appearance-based tracking techniques, mainly due to the lower num-
ber of correspondences provided by our algorithm, as mentioned in previous
Section. In contrast, we can observe a considerable decrease in accuracy of
our approaches, however, they are capable of estimating the motion in all se-
quences with an lower accuracy, mainly due to the less number of matches, due
to restrictive constraints. For this reason we believe our matching technique a
suitable option to address the line segment tracking problem under severe ap-
pearance changes, in combination with prior information from different sensors
and/or algorithms.

Computational Cost

Finally, we compare the computational performance of the different tracking
algorithms in the considered datasets considering the time of processing one
image (similarly to the VO framework). In the both cases we can observe the
superior performance of our proposal, it runs between 1.5 and 2 times faster
depending on the detector employed, thanks to the efficient implementation of
the geometric-based tracking thus making it very suitable for robust real-time
application, most likely in combination with other sensing, such as inertial
measurement unit sensors (IMU).
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4.D.6 Conclusions
In this work, we have proposed a geometrical approach for the robust match-
ing of line segments for challenging stereo streams, such as sequences including
severe illumination changes or HDR environments. For that, we exploit the na-
ture of the matching problem, i.e. every observation can only be corresponded
with a single feature in the second image or not corresponded at all, and hence
we state the problem as a sparse, convex, `1-minimization of the matching
vector regularized by the geometric constraints. Thanks to this formulation
we are able of robustly tracking line segments along sequences recorded under
dynamic changes in illumination conditions or in HDR scenarios where usual
appearance-based matching techniques fail. We validate the claimed features
by first evaluating the matching performance in challenging video sequences,
and then testing the system in a benchmarked point and line based VO algo-
rithm showing promising results.



5
Conclusions

In the last 20 years, visual SLAM techniques have reached remarkable maturity
with impressive results achieved in controlled environments. In fact, SLAM has
been considered a theoretically solved problem for the past decade, as stated by
Durrant-Whyte and Bailey in 2006 [43]: At a theoretical and conceptual level,
SLAM can now be considered a solved problem. However, substantial issues
remain in practically realizing more general SLAM solutions and notably in
building and using perceptually rich maps as part of a SLAM algorithm.

Today, more than a decade later, it is still one of the most active research
topics in computer vision and mobile robotics, and the question of Is SLAM
solved? is often asked for the scientific community [24]. One of the reasons
behind is that, despite the maturity reached by state-of-art visual SLAM tech-
niques in controlled environments, there are still many open challenges to
address before reaching a SLAM system robust to long-term operations in un-
controlled scenarios, where classical assumptions, such as static environments,
do not hold.

This thesis has contributed to overcome some of the aforementioned limi-
tations of traditional visual SLAM and/or odometry techniques by addressing
the problem from different perspectives. Specifically, this work aims to advance
towards a robust visual SLAM system that mitigates the limitation of current
techniques, i.e. , robustness to different types of environment, challenging il-
luminations, etc. In this context, the scope of this thesis comprehends on one
hand the design and implementation of new perception and navigation algo-
rithms that provide accurate location and some type of representation of the
environment, and, on the other, the integration of such approaches along with
technologies in real world applications, such as mobile robotics. The main con-
tributions of this thesis can be grouped into two major topics described in the
following parts.
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Contributions to SLAM in Low-textured Environments

The first set of works focuses on improving the robustness of visual odometry
and SLAM techniques in low-textured environments (see Figure 5.1), where
it is common that the performance of traditional approaches decreases due to
difficulties in a sufficient number of reliable point features. In such cases, the
effect is an accuracy impoverishment and, occasionally, the absolute failure of
the system.

Figure 5.1: Low-textured scenes are challenging for typical VO/SLAM systems.

This group of works benefits from an alternative feature choice, i.e. , line
segments, to exploit the information from the structured parts of the environ-
ment. For that, we have contributed with:

◦ Robust Stereo Visual Odometry through a Probabilistic Combination of Points
and Line Segments [62]. In this work, we implemented a stereo visual odom-
etry framework to effectively combine points and line segments, achieving
a good performance in both structured and low-textured scenarios. Despite
being one of our earliest contributions, we managed to achieve a versatile
system, capable of leveraging the impact of the different features based on
their uncertainty, that worked closely in real-time (between 10-30 Hz de-
pending on the resolution).

◦ Accurate Stereo Visual Odometry with Gamma Distributions [123]. Shortly
after the previous contribution, we focused on achieving a more accurate
modeling of the errors, by using a Gamma distribution over the residual
magnitudes, rather than a Gaussian over the projection errors. We demon-
strated, both in simulation and real data experiments, that using this error
models along our previous odometry system allowed us to achieve more ac-
curate performance.

◦ PL-SVO: Semi-Direct Monocular Visual Odometry by Combining Points
and Line Segments [61]. On the other hand, dealing with line segment fea-
tures in images is not as straightforward as the case of point features, since



123

Figure 5.2: Mapping results obtained with PL-SLAM in a sequence from the
EuRoC MAV dataset.

they are difficult to represent while also requiring higher computational bur-
den for its tracking. Indeed, this was one of the main bottlenecks of [62].
To alleviate this additional difficulties, we benefited from the semi-direct
approach to monocular odometry to extend a previous state-of-art work,
known as SVO [53]. This allowed for a faster feature tracking, performing at
almost 60 Hz in public datasets, since the semi-direct framework eliminated
the necessity of a continuous feature detection and matching.

◦ PL-SLAM: a Stereo SLAM System through the Combination of Points and
Line Segments [65]. Finally, we decided to extend , while also improving its
implementation, our previous stereo system to a complete real-time stereo
SLAM system. For that, we leveraged the importance of both types of fea-
tures at all instances of the process: visual odometry, keyframe selection,
bundle adjustment, etc. Among the benefits, the resulting system is more
robust to difficult environments and, additionally, the estimated maps are
richer (see Figure 5.2) and more diverse in 3D elements, which can be
exploited to infer valuable, high-level scene structures like planes, empty
spaces, ground plane, etc.

Contributions to SLAM under Challenging Illumination

One of the main open challenges in visual odometry and SLAM is its robustness
to difficult illumination conditions or high dynamic range (HDR) environments
(see Figure 5.3). In such cases, difficulties come from both the limitations
of the sensors, e.g. , quick changes from dark to bright areas might over-
expose the images, and the inability to perform a successful tracking of interest
points because of the bold assumptions in SLAM such as brightness constancy.
The work of this thesis contributes to these phenomena from two different
perspectives.

◦ Learning-based Image Enhancement for Visual Odometry in Challenging
HDR Environments [66]. Initially, we addressed this problem with a deep
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Figure 5.3: Tracking in environments with changes in illumination conditions or in
HDR scenarios is a challenge for traditional appearance-based matching techniques.

learning approach by enhancing monocular images to more informative and
invariant representations for VO and SLAM, since deep neural networks have
proved to achieve robust performance in varied conditions thanks to their
generalization properties. This work have also demonstrated how the inser-
tion of long short term memory (LSTM) networks allowed for temporally
consistent sequences since the estimation was also depending on previous
states. As a proof of concept, we then compared the performance of two of
the state-of-art algorithms for monocular VO, showing the benefits of using
the enhanced images, by achieving a more stable and accurate performance
in challenging environments.

◦ Geometric-based Line Segment Tracking for HDR Stereo Sequences [63]. Our
second approach adopted a more traditional perspective contributing with
a purely geometrical approach for the robust matching of line segments for
challenging stereo streams with severe illumination changes or High Dynamic
Range (HDR) environments. In this contribution we proved that line seg-
ments can be successfully tracked along video sequences by only considering
their geometric consistency, and validates it by evaluating both the match-
ing performance and motion estimation in challenging video sequences from
benchmark datasets. This allowed us to achieve good tracking in extremely
difficult situations while also accelerating the tracking 1.5-2 times than the
reference one.
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Future Work

Apart from improvements in robustness, which motivated this thesis work,
there are many other interesting topics to achieve a robust SLAM system
capable of working in arbitrary scenarios:

Long Term Appearance-based SLAM.A different approach to the visual SLAM
problem to the ones summarized in Chapter 2, which in turn estimates the
relative pose with respect to the map, is based on appearance. One of the
benefits from such approach is its robustness to drastic visual changes, such
as the ones produced between sequences taking during the day and night,
seasonal changes, or long-term structural changes. On the contrary, those
methods are not currently suitable for metric relocalization, where feature-
based approaches are still the only possibility, however, they do not provide
invariance to such dramatic appearance changes.

Active SLAM. A recently emerging research line that, in general, tries to
employ the incoming information in order to predict automatically the op-
timal settings for each situation. For instance, most SLAM implementations
do require extensive parameter tuning which typically is empirically set for
a given scenario, and this may not suffice in arbitrary scenarios where auto-
matic parameter adjustment techniques might highly benefit the algorithms.
Other examples can be the control of the camera parameters with predicted
values to maximize for instance the visual information, or provide robots with
mobile cameras able to predict which part of the map is more informative for
the assigned task.

Semantic Maps. Typical SLAM methods consist of a set of 3D landmarks
which can be used for robotics tasks such as obstacle avoidance or naviga-
tion, but its main advantage is the reduction of the modeled errors for a more
accurate localization. On the other hand, this type of maps are highly limited
to perform, for instance, more complex tasks such as object/person recogni-
tion, or higher level robotic missions, e.g. "Go to the kitchen", where semantic
knowledge of the environment is required. To illustrate this, an autonomous
car SLAM application could benefit from the use of semantic information
from the surroundings to predict the robot pose from the static objects while
at the same time estimating the state of the dynamic objects.

Deep-learning in SLAM. Finally, another group of techniques is starting to
emerge in the SLAM community, i.e. , those employing deep-learning ap-
proaches to provide the systems with high-level knowledge, hardly to achieve
with purely geometric techniques [36]. For instance, in [105] authors com-
bine CNNs with geometric SLAM, to provide semantically labeled 3D maps
in real-time. Deep learning has also been used to improve traditional SLAM
techniques, e.g. [21], or even to propose a keyframe-based dense camera track-
ing and depth map estimation that is entirely learned [156].
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