2,478 research outputs found

    Wireless magnetic sensor network for road traffic monitoring and vehicle classification

    Get PDF
    Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification

    Wavelet Transformation and Spectral Subtraction Method in Performing Automated Rindik Song Transcription

    Get PDF
    Rindik is Balinese traditional music consisting of bamboo rods arranged horizontally and played by hitting the rods with a mallet-like tool called "panggul". In this study, the transcription of Rindik's music songs was carried out automatically using the Wavelet transformation method and spectral subtraction. Spectral subtraction method is used with iterative estimation and separation approaches. While the Wavelet transformation method is used by matching the segment Wavelet results with the Wavelet result references in the dataset. The results of the transcription were also synthesized again using the concatenative synthesis method. The data used is the hit of 1 Rindik rod and a combination of 2 Rindik rods that are hit simultaneously, and for testing the system, 4 Rindik songs are used. Each data was recorded 3 times. Several parameters are used for the Wavelet transformation method and spectral subtraction, which are the length of the frame for the Wavelet transformation method and the tolerance interval for frequency difference in spectral subtraction method. The test is done by measuring the accuracy of the transcription from the system within all Rindik song data. As a result, the Wavelet transformation method produces an average accuracy of 83.42% and the spectral subtraction method produces an average accuracy of 78.51% in transcription of Rindik songs

    A Novel Techniques for Classification of Musical Instruments

    Get PDF
    Musical instrument classification provides a framework for developing and evaluating features for any type of content-based analysis of musical signals. Signal is subjected to wavelet decomposition. A suitable wavelet is selected for decomposition. In our work for decomposition we used Wavelet Packet transform. After the wavelet decomposition, some sub band signals can be analyzed, particular band can be representing the particular characteristics of musical signal. Finally these wavelet features set were formed and then musical instrument will be classified by using suitable machine learning algorithm (classifier). In this paper, the problem of classifying of musical instruments is addressed.  We propose a new musical instrument classification method based on wavelet represents both local and global information by computing wavelet coefficients at different frequency sub bands with different resolutions. Using wavelet packet transform (WPT) along with advanced machine learning techniques, accuracy of music instrument classification has been significantly improved. Keywords: Musical instrument classification, WPT, Feature Extraction Techniques, Machine learning techniques

    Improving Quality of Life: Home Care for Chronically Ill and Elderly People

    Get PDF
    In this chapter, we propose a system especially created for elderly or chronically ill people that are with special needs and poor familiarity with technology. The system combines home monitoring of physiological and emotional states through a set of wearable sensors, user-controlled (automated) home devices, and a central control for integration of the data, in order to provide a safe and friendly environment according to the limited capabilities of the users. The main objective is to create the easy, low-cost automation of a room or house to provide a friendly environment that enhances the psychological condition of immobilized users. In addition, the complete interaction of the components provides an overview of the physical and emotional state of the user, building a behavior pattern that can be supervised by the care giving staff. This approach allows the integration of physiological signals with the patient’s environmental and social context to obtain a complete framework of the emotional states

    Extended playing techniques: The next milestone in musical instrument recognition

    Full text link
    The expressive variability in producing a musical note conveys information essential to the modeling of orchestration and style. As such, it plays a crucial role in computer-assisted browsing of massive digital music corpora. Yet, although the automatic recognition of a musical instrument from the recording of a single "ordinary" note is considered a solved problem, automatic identification of instrumental playing technique (IPT) remains largely underdeveloped. We benchmark machine listening systems for query-by-example browsing among 143 extended IPTs for 16 instruments, amounting to 469 triplets of instrument, mute, and technique. We identify and discuss three necessary conditions for significantly outperforming the traditional mel-frequency cepstral coefficient (MFCC) baseline: the addition of second-order scattering coefficients to account for amplitude modulation, the incorporation of long-range temporal dependencies, and metric learning using large-margin nearest neighbors (LMNN) to reduce intra-class variability. Evaluating on the Studio On Line (SOL) dataset, we obtain a precision at rank 5 of 99.7% for instrument recognition (baseline at 89.0%) and of 61.0% for IPT recognition (baseline at 44.5%). We interpret this gain through a qualitative assessment of practical usability and visualization using nonlinear dimensionality reduction.Comment: 10 pages, 9 figures. The source code to reproduce the experiments of this paper is made available at: https://www.github.com/mathieulagrange/dlfm201

    A Python-based Brain-Computer Interface Package for Neural Data Analysis

    Get PDF
    Anowar, Md Hasan, A Python-based Brain-Computer Interface Package for Neural Data Analysis. Master of Science (MS), December, 2020, 70 pp., 4 tables, 23 figures, 74 references. Although a growing amount of research has been dedicated to neural engineering, only a handful of software packages are available for brain signal processing. Popular brain-computer interface packages depend on commercial software products such as MATLAB. Moreover, almost every brain-computer interface software is designed for a specific neuro-biological signal; there is no single Python-based package that supports motor imagery, sleep, and stimulated brain signal analysis. The necessity to introduce a brain-computer interface package that can be a free alternative for commercial software has motivated me to develop a toolbox using the python platform. In this thesis, the structure of MEDUSA, a brain-computer interface toolbox, is presented. The features of the toolbox are demonstrated with publicly available data sources. The MEDUSA toolbox provides a valuable tool to biomedical engineers and computational neuroscience researchers
    • …
    corecore