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ABSTRACT 
 

Anowar, Md Hasan, A Python-based Brain-Computer Interface Package for Neural Data 

Analysis. Master of Science (MS), December, 2020, 70 pp., 4 tables, 23 figures, 74 references. 

Although a growing amount of research has been dedicated to neural engineering, only a 

handful of software packages are available for brain signal processing. Popular brain-computer 

interface packages depend on commercial software products such as MATLAB. Moreover, 

almost every brain-computer interface software is designed for a specific neuro-biological signal; 

there is no single Python-based package that supports motor imagery, sleep, and stimulated brain 

signal analysis. The necessity to introduce a brain-computer interface package that can be a free 

alternative for commercial software has motivated me to develop a toolbox using the python 

platform. In this thesis, the structure of MEDUSA, a brain-computer interface toolbox, is 

presented. The features of the toolbox are demonstrated with publicly available data sources. The 

MEDUSA toolbox provides a valuable tool to biomedical engineers and computational 

neuroscience researchers.
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CHAPTER I 

INTRODUCTION 

Motivation 

Brain signal analysis has become a significant research field in biomedical engineering. 

The development of the brain-computer interface makes it possible to regulate an external device 

only by thought. A brain-computer interface system transforms the brain's electrical activities to 

control signals used for moving prosthetic limbs or a computer cursor. Studies are going on 

different brain signal acquisition techniques, feature extraction methods, classification 

algorithms, and many other aspects of brain-computer interface systems. Although Python has 

become the most dynamic platform for scientific computing, MATLAB is still prevalent in 

brain-computer interface paradigms. There are not enough studies on python-based software 

packages for brain signal processing in the literature.  

Being an interactive, object-oriented programming language, Python is the ultimate 

choice for data analysis. Python has become the state-of-the-art programming language in this 

era of data science with its full-fledged data analysis libraries like NumPy, SciPy, Pandas, 

Matplotlib. Python has a noncommercial open source license. Python is also a portable language, 

which means the code can run on any machine irrespective of the operating system. Python has 

no fixed data types of variables; all the variables are dynamic. That means the variables can 

update their types during program execution. The Python interpreter needs to check the data 

types of the variables repeatedly during the program execution, making Python execution speed
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much slower than compiled languages such as C. However, the NumPy library of Python 

resolves this drawback of Python by assigning static arrays. Moreover, with the help of data 

visualization libraries such as Matplotlib and Seaborn, Python can display complex graphs, 

charts, and histograms. 

Machine learning and Deep learning have emerged as the most efficient tools for big data 

analysis in this era of data science. The scikit-learn library of Python provides several classical 

and advanced machine learning algorithms for both supervised and unsupervised learning 

(Pedregosa, et al., 2011). Scikit-learn is distributed under a free software license, BSD, which 

supports the philosophy of open-source knowledge. Though it is written in a high-level language, 

it is an ease-of-use module. Scikit-learn can successfully harness Python's rich environment for 

object classification, statistical analysis, and pattern recognition. Moreover, Python also provides 

a deep neural network library called Keras. Keras usually runs on top of TensorFlow or Theano. 

Contribution 

In this research, a brain-computer interface toolbox, MEDUSA, is designed using Python. 

MEDUSA can analyze brain signals to understand the spontaneous and stimulated neural 

activities. The toolbox can perform motor imagery data analysis, sleep analysis, and speech 

signal processing. It works with several types of neurophysiological signals, i.e., 

Electroencephalogram (EEG), Electrocorticogram (ECoG), and Electrooculogram (EOG). 

MEDUSA can overcome commercial software limitations. 

A Graphical User Interface (GUI) is also developed for the toolbox to bring all the 

features under a common platform. An open-source Python framework, Kivy, is used as the 

graphical interface for taking full advantage of Python's dynamic nature. The user-friendly 
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graphic interface allows the users to select the neural signal and feature to be analyzed. The users 

can visualize their selected type of neural signal and extract biological information from them.  

Several machine algorithms from the Scikit-learn library are implemented for 

classification and regression analysis. The Linear Discriminant Analysis classifier and Common 

Spatial Pattern filter are utilized for motor imagery classifications. In Steady-State Visual 

Evoked Potential (SSVEP) epoch classification, the Support Vector Machine classifier is 

implemented to separate the visual stimulated signal. The Ridge Regression model is used to 

model the relationship between the speech stimulus signal and EEG. 

The thesis is composed as follows: chapter 2 discusses the research background for neural 

signal analysis. Chapter 3 describes existing Brain-Computer Interfaces toolboxes. Chapter 4 

illustrates the proposed python-based Brain-Computer Interface toolbox (MEDUSA). Chapter 5 

discusses the features of the developed MEDUSA toolbox. Chapter 6 provides a conclusion.
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CHAPTER II 

RESEARCH BACKGROUND 

Brain Electrophysiological Signals 

The human brain produces electrical activities from different parts of the brain. Neurons 

use these electrical signals to receive and transmit information. Neurons communicate with each 

other by generating action potentials. A stimulated neuron fires an action potential, and this 

action potential takes the message signal to the axon terminal. Electrical impulses due to the 

brain's electrical activities enable the communication process.  

The human brain is the most vital part of our nervous system. It consists of two parts, i.e., 

the central nervous system and the peripheral nervous system. The brain and spinal cord together 

make up the central nervous system. The peripheral nervous system contains the autonomic 

nervous system and the somatic nervous system. Again, the brain can be classified into two 

major regions: cerebral cortex and subcortical areas. The cerebral cortex controls motor and 

sensory processing. Besides, it also involves pattern recognition, language processing, reasoning, 

and planning. The ventral temporal cortex of the brain performs complex object recognition. 

High-level visual processing, i.e., face and scene recognition, is also carried out in the ventral 

temporal lobe. 

Brain Signals Measurement Techniques 

There are different techniques to measure the electrical activity of brain signals. The 

neural data recording system consists of an amplifier, analog to digital converter, and software
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for storing the data (Guzman, Schlögl, & Schmidt-Hieber, 2014). Among the recording systems, 

the most popular methods are Electroencephalography (EEG), Electrocorticography (ECoG), 

Magnetoencephalography (MEG), and Functional Magnetic Resonance Imaging (fMRI).  

Electroencephalography (EEG) 

 

Electroencephalography (EEG) is a non-invasive method of measuring brain electrical 

activity. Due to cheap measuring devices, most brain-computer interface systems use EEG as the 

input signal. The electrodes of the EEG measuring devices are placed on the surface of the scalp. 

These electrodes are not in direct contact with the nerves or muscles; hence, EEG is called a non-

invasive method. The EEG recording devices are lightweight, comparatively cheap, and easy to 

use (Graimann, Allison, & Pfurtscheller, 2009). It makes EEG the most popular technique for 

brain signal recording. 

The EEG electrodes are positioned using an internationally recognized 10-20 system to 

get a consistent recording of EEG. 10-20 system refers to the electrodes' positions across the 

scalp and the underlying area of the scalp. The distance of nasion to inion is divided into 10%, 

20%, 20%, 20%, and 10% parts. Figure 1 shows the electrodes that are placed at these points 

(Nicolas-Alonso & Gomez-Gil, 2012). 
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Figure 1: 10-20 EEG Recording System 

 

Table 1 represents the information related to different EEG spectra. 

Band Frequency 

(Hz) 

Amplitude 

(μV) 

Location State 

 

Delta 0.5–4 100–200 The frontal region of the head Deep sleep 

Theta 4–8 5–10 Various regions of the head Drowsiness, light 

sleep 

Alpha 8–13 20–80 Posterior region of the head Relaxed 

Beta 13–30 1–5 Most evident in the frontal region Active thinking 

Gamma >30 0.5–2 Somatosensory cortex Hyperactivity 

 

Table 1: EEG Frequency Bands 

The electrodes to capture the EEG signals accumulate action potentials from different 

sources. It makes EEG signal decoding tricky as the recorded signals are susceptible to noises. 

The noises in the accumulated EEG signal are known as signal artifacts. Artifacts can be 

introduced by the subjects, environment, and equipment. As artifacts are not related to the 
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specified brain activity, different preprocessing techniques are applied to the recorded EEG 

signal to remove the artifacts. 

Heuristically, EEG wave patterns can be distinguished in synchronized and 

desynchronized activities (Steriade, Gloor, Llinas, Lopes da Silva, & Mesulam, 1990). The 

synchronized activities are defined as two or more oscillations having the same frequency. 

Usually, synchronized waves have higher amplitudes and lower frequencies. Reticular thalamic 

neurons impact these synchronized activities (Steriade, Jones, & Llinls, Thalamic oscillations 

and signaling, 1990). On the other hand, desynchronized waves have lower amplitudes and 

higher frequency. An increase of the oscillatory activity in a particular frequency band is known 

as Event-related synchronization (ERS). Similarly, a decrease of the oscillatory activity in a 

fixed frequency band is called Event-related desynchronization (ERD). Event-related 

synchronization (ERS) and Event-related desynchronization (ERD) are essential parts of motor 

imagery decoding. 

The drawbacks of the EEG signal are limited spatial and temporal resolution. As the 

electrodes of the EEG measuring device are placed on the scalp's surface, these electrodes are not 

in direct contact with the cortex. The distance from the source affects the recording of the EEG 

signals. This phenomenon is called volume conduction, and it results in a low spatial resolution 

in EEG potentials. Suppose the EEG signal's desired signal portion is weak and has other strong 

signal components having the same frequency range. In that case, low spatial resolution causes a 

severe problem in signal analysis. The frequency range of visual and sensorimotor signals 

overlaps most subjects, giving rise to this type of situation (Blankertz, Tomioka, Lemm, 

Kawanabe, & Muller, 2008). 
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Electrocorticography (ECoG) 

Electrocorticography (ECoG) is an invasive method of neural signal recording. It is 

called an invasive procedure because it requires surgery to place the ECoG electrodes inside the 

brain. ECoG recording method achieves a better signal to noise ratio and higher frequency 

spectra than EEG signals. 

Electrooculography (EOG) 

Electrooculography (EOG) is an eye movement measurement technique where the 

difference of electrical potential between the front and back of the eye is recorded. The potential 

change of the anterior and posterior part of the eye is known as standing potential (Constable, 

Bach, Frishman, Jeffrey, & Robson, Feb 2017). EOG measures this standing corneal-retinal 

potential. Two electrodes are placed on either left and right side of the eye or above and below 

the eye. Another electrode is also placed on the forehead to make the ground. Figure 2 shows the 

placement of electrodes to record Electrooculogram data. 

 

Figure 2: Electrodes Placement for EOG Recording 

 

Any movement of the eye corresponds to a potential change between the retina and 

cornea. When the eye moves from the center position to the direction of one of the electrodes, 
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the electrode measures the potential of the retina's positive side. At that moment, the other 

electrode takes the potential of the negative side of the retina. Rapid eye movement (REM) 

measurement during sleep can be performed using EOG. Figure 3 presents the EOG data 

measurement technique. 

 

Figure 3: EOG Measurement Method 

The values of EOG signals are usually in the microvolts range. The range from 50 µV to 

3500 µV. The change of EOG values due to eye movement is almost linear for gaze angles up to 

30 degrees (Navarro, Vázquez, & López-Guillén, 2018). The advantage of the EOG method is 

that it can record large eye movements. EOG can also measure eye movements when the eyelids 

are closed (Florea, Florea, & Vertan, 2018). 

Functional Magnetic Resonance Imaging (fMRI) 

Brain activity and blood circulation are related. The Functional Magnetic Resonance 

Imaging (fMRI) corresponds to neural activity by measuring the change in blood flow near the 
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active brain cells. When a neuron is active, it needs some energy to fire an action potential. The 

required energy is released by the blood, which is known as the hemodynamic response. The 

hemoglobin of oxygenated blood is diamagnetic, and deoxygenated blood hemoglobin is 

paramagnetic. The method for detecting magnetic signal variation due to blood oxygen level is 

called blood oxygen level-dependent (BOLD) contrast. fMRI method uses the BOLD contrast 

imaging technique to map the neural activity. 

Neuroimaging techniques like fMRI can understand neural circuitry abnormalities related 

to emotion regulation (Passarotti, Sweeney, & Pavuluri, 2009). Abnormalities in these neural 

systems may be associated with different types of mood disorders, i.e., bipolar disorder, 

depression, and anxiety disorders (Phillips, Ladouceur, & W.C., 2008). Machine learning in 

neuroimaging can help to discriminate the individuals who are at future risk of psychiatric 

disorders in the future (Mourão-Miranda, et al., 2012). 

Magnetoencephalogram (MEG) 

Magnetoencephalography (MEG) is a functional neuroimaging technique to capture the 

magnetic field produced in the brain. The main difference between MEG from EEG is that MEG 

uses a magnetic signal instead electrical signal to represent neural activity. MEG can record 

brain signals with high spatial and temporal resolution. MEG works outside of the skull, so this 

technique does not need surgery. As the MEG signals are weak, sensitive magnetometers are 

required to acquire the signal. Recently, superconducting quantum unit interference devices 

(SQUID) are being used as sensitive sensors. MEG also requires magnetic shielding to avoid 

interference from the earth's magnetic field. Usually, magnetically shielded rooms (MSR) made 

of aluminum and nickel-iron soft ferromagnetic alloy are used for the MEG recording 
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experiment (Ramadan & Vasilakos, 2017). MEG does not have any operational noise, which 

allows the subject to move its head during MEG recording. 

Brain-Computer Interface 

Brain-Computer Interface (BCI) is a non-muscular channel between the brain and an 

external device for communication and control. BCI, also known as the brain-machine interface 

(BMI), creates a direct pathway between the human body and a computer (Vidal, 1973). Each 

human body requires peripheral nerves as a communication pathway to control muscles. BCI 

bypasses the body’s original communication pathway with an artificial pathway.  

Electrophysiological measures of brain activity are used to develop BCI. BCI identifies 

the user's intent from brain activities such as slow cortical potentials, mu, and beta rhythms [11]. 

BCI decodes various scalp recorded rhythms recorded from the scalp. The decoded signal is then 

used to control an external electrical/mechanical device such as a prosthetic limb, a speller 

device, etc. The significant application of BCI is clinical BCI for patients who lost muscular 

control. Since the brain directly regulates the movements of the hands, feet, or similar organs, it 

is possible to control an external device using only brain signals; without using relevant muscles 

(Choi & Min, 2015). BCI system enables people with neuromuscular disorders to control 

sensorimotor activities. In a BCI system, the input is the neural signal, and the output is the 

control signal. The objective of BCI is to infer values from a person's neurophysiological signal 

(usually EEG). So, the BCI system can be regarded as an inference problem. 

Every BCI system needs to have four features. Firstly, a BCI needs to record direct brain 

signals, which can be either invasive or non-invasive. Secondly, a BCI should give feedback to 

the user. Thirdly, user feedback needs to be in real-time. Finally, a BCI must be associated with 

the user’s intentional control (Graimann, Allison, & Pfurtscheller, 2009). A user needs to 
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imagine performing a mental task to reflect it with a BCI system. Unintentional or passive 

activities of the brain can not be translated with BCIs. 

Based on invasiveness, BCI can be divided into two types: non-invasive and invasive. In 

non-invasive techniques, signals are recorded by placing electrodes over the scalp. Non-invasive 

methods, i.e., EEG, do not require any penetration in the scalp. In invasive BCI methods like 

ECoG, recordings are taken directly from the brain. The invasive techniques record the brain 

signal underneath the skull. The microelectrodes are inserted on the brain surface. The electrodes 

are implanted directly into the cortex under the skull for single-cell or multi-unit recording. So, it 

needs surgery in the brain to put the electrodes inside the head. Invasive methods have improved 

signal strength than non-invasive methods (Ramadan & Vasilakos, 2017). However, invasive 

techniques have surgery risks, which is certainly a disadvantage. Due to higher surgical risks and 

ethical issues, invasive procedures are not usually applied to human subjects (Fouad, Amin, El-

Bendary, & Hassanien, 2015). There are different types of non-invasive BCI based on the 

recording modality, including EEG (Electroencephalography), fMRI (functional Magnetic 

Resonance Imaging), MEG (Magnetoencephalography), EOG (Electrooculography), NIRS 

(Near-Infrared Spectroscopy), and PET (Positron Emission Tomography) (Hassanien & Azar, 

2015). However, EEG has become the most common technology for BCI applications because of 

its affordable price and clinical use portability. 

BCI systems can be divided into two categories based on signal acquisition methods: 

Online or Real-time and Offline analysis. Online analysis means real-time data processing. 

During the online study, EEG or ECoG devices are connected to the subject's scalp during the 

experiment. The offline analysis is performed using existing prerecorded data. The offline 



 

13 
 

analysis does not require the subjects' presence or the acquisition device all the time (Das, 

Tripathy, & Raheja, 2019). 

BCI systems can be operated under asynchronous and synchronous modes. They are also 

known as self-paced and cue-based. In self-paced mode, the user of the BCI has control of the 

system. The user does not have to wait for the cue from the system. The terminating signal also 

comes from the user. So, the system needs to be always online and takes input from the brain. 

This type of system is practical for real-life implementation. But due to continuous operation, the 

performance of the self-paced system can be affected. It requires a specific change in neural 

activity from continuous data to detect user intention. On the other hand, the cue-based BCI 

system works during limited time frames. It needs a cue presented to the user to activate the 

system. Cue-based systems can be either real-time or offline systems. The implementation of 

cue-based BCI systems is relatively easy. However, because of user dependency on specific time 

frames, they are challenging to use in real-life applications (Jochumsen, et al., 2019). 

Figure 4 shows brain-computer interface systems classification based on invasiveness, 

signal acquisition method, and mode of operation. 
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Figure 4: Classification of BCI systems 

Figure 5 presents the brain-computer interface systems based on different types of 

electrophysiological signals. 
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Asynchronous
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Figure 5: Types of BCI based on Neurophysiological signals 

The most suitable technique for implementing BCI in a larger population is using EEG 

modality. EEG based BCI system can be divided into two categories: (i) externally stimulated 

paradigms resulting in evoked potential, and (ii) internally induced paradigms known as 

spontaneous activity. BCI also works with Event-Related Potentials (ERP). 
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EEG-based BCI has limitations due to the low spatial resolution of the EEG signal. 

Multimodal methods, along with EEG, are used to overcome this limitation. The multimodal 

approach is known as the Hybrid BCI system, which combines multiple biological signals 

(Müller-Putz, et al., 2011). Among the two or more physiological modalities in the hybrid BCI 

paradigm, at least one needs to be EEG (Amiri, Fazel-Rezai, & Asadpour, 2013). The structures 

of Hybrid BCI systems are shown in Figure 6. 

 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 6: Hybrid BCI Structures 

(a) Sequential form (b) Simultaneous form 

Brain-Computer Interface (BCI) tasks are two types: Classification and Regression 

analysis. Motor imagery-based brain-computer interface tasks are usually considered as 

classification problems. However, they can be analyzed using the regression technique too. 

Implementation of classification or regression depends on the problem. For example, in Figure 7 

(Sellers, Krusienski, McFarland, & Wolpaw, 2007), both regression and classification analysis 

BCI Paradigm 1 User Interface BCI Paradigm 2 Control Interface 

BCI Paradigm 1 

User Interface 

BCI Paradigm 2 

Control Interface 
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need one function for two targets case. Although regression needs only one function for five 

target cases, the classification approach requires four functions. Figure 7 shows the difference 

between classification and regression analysis. 

 

Figure 7: Classification Vs. Regression Analysis 

Machine Learning Applications in Brain Signals Analysis 

Linear discriminant analysis (LDA), Support Vector Machine (SVM), and K Nearest 

Neighbor (KNN) perform well as machine learning decision support systems for physiological 

signals. The machine learning algorithm which calculates a prediction function from the labeled 

data is called supervised learning. In supervised learning, training data is analyzed to develop a 

relation between data. This relation is used to map new data samples. This supervised learning 

algorithm needs to be tested after trained with data. 

Machine learning needs relevant feature selection, which consumes a lot of effort. 

Conventional machine learning techniques to classify EEG signals depend on hand-crafted 



 

18 
 

features. These methods use information that is already present in the image itself. Besides, it 

takes lots of time to perform trial and error to find the best feature extraction algorithm.  Deep 

learning overcomes this feature selection and extraction part. Deep learning methods can be 

applied to physiological signals, i.e., EEG, ECoG, EOG. The convolutional neural network 

model (CNN) is the most popular deep learning algorithm. However, deep learning is a lot more 

complicated than machine learning, resulting in longer training time (Faust, Hagiwara, Hong, 

Lih, & Acharya, 2018). 

EEG has a non-stationarity property, which means the average position of an EEG signal 

defined over one interval is different in another interval. For this reason, feature extraction from 

the EEG signal is a difficult task. Tayeb et al. (2019) developed three deep learning models for 

imagery movements analysis directly from raw EEG signals. These are long short-term memory 

(LSTM), recurrent convolutional neural network (RCNN), and a spectrogram-based 

convolutional neural network model (CNN). The LSTM model is based on replacing neurons 

with LSTM units having feedback connections. The spectrogram-based CNN is called a 

Pragmatic convolutional neural network (p-CNN). As p-CNN shows much better classification 

performance than both LSTM and RCNN methods, it can be used for Motor Imagery decoding 

(Tayeb, et al., 2019). 

Common Spatial Pattern (CSP) 

 

Common spatial pattern (CSP) is a special type of spatial filter used to decompose a 

multivariate signal into additive components. CSP maximizes the variance in two-class signal 

matrices. This method can be implemented for extracting features in a two-class decoding 

problem. It is mainly used for the brain-computer interface to get the component signals that 

reflect the cerebral activities related to motor imagery functions (Pfurtscheller, Guger, & 
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Ramoser, 1999). Since event-related desynchronization (ERD) or event-related synchronization 

(ERS) are the concerned parts for motor imagery decoding, the CSP method is highly efficient in 

calculating spatial filters for detecting these segments (Blankertz, Dornhege, Krauledat, Muller, 

& Curio, 2007).  

The common spatial pattern can be adapted for event-related potentials (ERP) analysis 

(Congedo, Korczowski, Delorme, & Lopes da Silva, 2016). Distinct regions of the brain control 

the movement of certain parts of the body. For example, the cortex's left hemisphere controls the 

right hand, and the cortex's right hemisphere controls the left hand (Lemm, Blankertz, Curio, & 

Muller, 2005). So, every spatial pattern is related to the cortex's specific region that controls the 

motor activity (Blankertz, Dornhege, Krauledat, Muller, & Curio, 2007). The microscopic model 

of EEG generation described by Nunez et al. (Nunez & Srinivasan, 2006)  is, 

 𝑥(𝑡) = 𝑨𝑠(𝑡) + 𝑛(𝑡) (1) 

Where, x(t) = scalp surface potential, A = propagation vector, s(t) = source signal, n(t) = noise 

The model connects the source activities to the surface electrodes’ potentials; hence it is 

called the forward model. The propagation vector A of the forward model represents the 

coupling strength of each source to the electrodes. A is known as the spatial patterns of the 

sources. By reversing the model, we get, 

 𝑆̂(𝑡) = 𝑊𝑇 𝑥(𝑡) (2) 

This backward model relates the acquired signals from the sensors to the originating 

sources. The rows of the 𝐖𝐓 matrix is called spatial filters. Common Spatial Pattern analysis 

yields a data-driven signal decomposition represented by 𝐖𝐓 matrix. 



 

20 
 

Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a well-known method for classification 

purposes. PCA is an unsupervised learning algorithm to compress the data. It minimizes the 

dimensions of high-dimensional datasets. In PCA, correlated variables are expressed in a smaller 

number of variables to maximize the variance. These smaller numbers of variables are called 

principal components. But the shape and location of the data sets change if PCA is applied. 

Linear Discriminant Analysis (LDA) 

Linear discriminant analysis (LDA) calculates a linear combination of features to 

discriminate between two or more events. To classify between these two classes (both hands 

movement vs. both feet movement), LDA is implemented. LDA is computationally cheap, easy 

to implement, and provides almost perfect results as other complex classification techniques [4]. 

It mathematically models the difference between the classes of data. It tries to maximize the ratio 

of between-class variance to the within-class variance of a dataset. LDA is vastly used in pattern 

recognition and machine learning algorithm. In Figure 8, LDA provides a decision region 

between set 1 and set 2. 

 

Figure 8: Application of Linear Discriminant Analysis 
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Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning technique that supports both 

classification and regression analysis. SVM performs classification tasks by constructing 

hyperplanes to distinguish between objects of different classes. It draws separating lines to define 

decision boundaries. SVM provides higher accuracy for image classification and image 

segmentation tasks. The most used kernel functions for SVM are the Linear and the Radial Basis 

Function (RBF) kernels. 

 𝐾(𝑥, 𝑥′) = exp (−𝛾||𝑥 − 𝑥′||2) (3) 

Where 𝛾 = influence of a single training example and 𝛾 > 0. 

Cross Validation 

In the K-Fold cross-validation method, the original data is split n times, and n-fold cross-

validation is performed on those n different splits. At first, each split of training data is cut into n 

pieces. Then for a single piece of a split, the classifier is trained on the other n-1 pieces. The 

process is continued for each piece of the split data. The average is then determined to get the 

accuracy of this split. The whole procedure can be visualized in Figure 9 (Estermann, 2017). In 

this figure, 10-fold cross-validation is performed. 
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Figure 9: Cross-Validation Workflow 

Automatic Event Detection 

Automatic event detection detects micro-events, i.e., sleep spindles, k complex, slow-

wave, rapid eye movement, etc., from sleep data. Automatic event detection methods are 

categorized into three types. The first one is filtering the signal to extract the envelope and 

thresholding with a fixed or tunable step. The second method starts with decomposing the signal 

into transient and oscillatory components, then filtering, and thresholding are applied. The third 

method relies on machine learning techniques, filtering, spectral and temporal feature extraction. 

Then the events from the sleep data can be predicted using binary Support Vector Machine. 
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Fourier Analysis Vs. Time-Frequency Analysis 

The Fourier transform (FFT) is the most common technique to get frequency domain data 

from time-domain data. Fourier transform gives the frequency content of a signal, but the time 

information is lost in the process. Fourier analysis considers signal as infinite duration sinusoids; 

it represents the signal by a sum of continuous sinusoids. However, in practical cases, many 

signals are of short duration and change properties with time. Although Fourier transform is 

good at representing stationary signals, it is not suitable to detect the essential characteristics of 

non-stationary signals like EEG or speech data. The period and frequency of non-stationary 

signals change substantially over their duration. As Fourier transform is not reliable for transient 

data analysis, time-frequency analysis can overcome this deficiency. Time-frequency analysis 

studies a signal in a two-dimensional way, both in time and frequency domains. Most efficient 

time-frequency analyses are Short-time Fourier transform (STFT) and wavelet transform. 

Short-time Fourier Transform (STFT)  

Short-time Fourier transform (STFT) performs a local spectral analysis. STFT divides a 

longer time signal into shorter segments to compute the Fourier transform on each segment. The 

main disadvantage of the Short-time Fourier Transform is that it can provide only uniform 

resolution. In STFT, a wide window in the time domain results in more points in the frequency 

domain. So, the spectrum has more detail, which means it has a higher frequency resolution.  But 

a wide time window means less precision in the time domain, which gives lower time resolution. 

Similarly, a narrower window in the time domain provides fair time resolution but low-frequency 

resolution. This relatively poor time-frequency resolution trade-off is a considerable downfall of 

STFT. 
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Wavelet Transform 

Neuro-biological signals are usually non-periodic and contain fast transients features. 

Wavelet transform is more suitable than STFT for analyzing these signals. Wavelet transform 

decomposes a signal in a sum of small parts called wavelets. Wavelets are a special kind of 

function that shows oscillatory behavior for a short period with an average value of zero. 

Wavelet transform offers several advantages for transient signal analysis. The most significant 

advantage of wavelet analysis is its adaptive resolution property. Unlike the STFT, the Wavelet 

transform does not perform signal analysis at a fixed resolution at different frequencies. As the 

length of a wavelet is inversely proportional to the frequency, the time-frequency product 

remains the same. That means the number of cycles of oscillations within a wavelet is constant. 

In the case of low frequencies, frequency resolution increases while time resolution decreases. 

Thus, wavelet transform provides high-frequency resolution at low frequencies. Similarly, it 

provides high time resolution at high frequencies. Overall, the wavelet transform yields better 

time-frequency resolution comparing with STFT. Moreover, the computational time for EEG 

analysis using wavelet transform is significantly lower than with Fourier analysis (Schiff, 

Aldroubi, Unser, & Sato, 1994). In Figure 10, the Fourier Transform, STFT, and Wavelet 

Transform are compared. 
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Figure 10: Comparison of Fourier Transform, STFT, and Wavelet Transform 

Morlet wavelet, derived from Gabor wavelet, gives the best time-frequency resolution 

trade-off. That is why the wavelet transformation using Morlet wavelet has become an essential 

part of event-related brain activity analysis (Sinkkonen, Tiitinen, & Näätänen, 1995). The real-

valued Morlet Wavelet is shown in Figure 11. 

 

Figure 11: Real-valued Morlet Wavelet 
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CHAPTER III 

RELATED WORKS 

Brain-Computer Interface Toolboxes using MATLAB and C/C++ 
 

There are several Brain-Computer Interface (BCI) software platforms for researchers and 

general users. However, most of the BCI software require third party commercial software like 

MATLAB. The MATLAB development environment is a rapid prototyping tool. It has gained 

popularity as a computing platform due to its vast computational tools for high-performance 

prototyping. Apart from MATLAB, C, and C++ language based BCI tools are also available.  

EEGLAB 

EEGLAB is the most well-known software to process neurophysiological data. It has been 

widely used as a signal processing environment for EEG signal analysis. It is written in the 

MATLAB language. EEGLAB provides continuous and event-related EEG and MEG data 

analysis. EEGLAB has advanced signal preprocessing methods like time-frequency analysis, 

artifact rejection, independent component analysis (ICA), etc. It supports 20 different binary file 

formats of neuro signal data. It also comes with a user interface. However, EEGLAB runs on the 

MATLAB software environment, which requires a commercial MATLAB license. 

BCILAB 

BCILAB is a MATLAB toolbox for building and testing human-computer interfaces. It 

works as a plugin for EEGLAB. It is open-sourced and distributed under a GPL license. BCILAB 

provides a rich graphical interface that supports all the functionality in the toolbox.
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g.BCIsys 

g.BCIsys is a commercial BCI research tool by Gtec which supports several data 

acquisition systems. It is a MATLAB/Simulink based BCI research and development system. 

g.BCIsys processes brain signals to record slow cortical potentials and P300 waves. It has 

Simulink blocks for data visualizing and storing as well as for parameter extraction and 

classification. g.BCIsys has g.HIsys library for biosignal data acquisition. Besides, providing 

standard Simulink blocks, g.HIsys library allows the users to write customized code using 

MATLAB or C. The g.BSanalyze library of g.BCIsys allows performing multimodal signal 

processing and analysis. g.BSanalyze also has a graphical user interface for EEG, ECoG, EOG, 

EMG data analyses. 

BCI2000 

BCI2000 is a general-purpose BCI research software. It was first released in 2001 and 

written in C/C++ language. It is free for education and non-profit research purposes. It 

incorporates biosignals, signal processing techniques, output devices, and operating protocols. 

BCI2000 contains four modules. The source module, signal processing module, user application 

module, and operator module perform brain signal acquisition, process the brain signals, provide 

user feedback, and interface with the user, respectively. It comes with an interactive user 

interface and supports online signal processing. BCI2000 has a stimulus presentation program to 

present auditory and visual stimuli to the BCI system user. This stimulus presentation module is 

suitable for psychophysiological experiments, i.e., implementing event-related potential (ERP) 

paradigms. The real-time performance of the BCI2000 platform was tested using three BCI 

systems: cursor control using sensorimotor rhythms, cursor control using slow cortical potentials, 
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and spelling using P300 potential (Schalk, McFarland, Hinterberger, Birbaumer, & Wolpaw, 

2004). 

 

BCI++ 

BCI++ is an open-source and free application for brain-computer interfaces. BCI++ 

consists of two modules: the first module is called the hardware interface module. The hardware 

interface module performs signal acquisition and visualization. It allows real-time analysis either 

in C/C++ or MATLAB environment. It is written in C/C++ and built for Microsoft Windows 

only. It can work both for home applications and laboratory experiments. The hardware interface 

module supports Kimera II, G.Mobilab, Neuroscan, Brain Product devices. BCI++ 

communicates with these devices via both Bluetooth and TCP/IP. The second module is a 

graphical user interface module known as AEnima. Similar to the hardware interface module, 

AEnima is also written in C/C++ language. It was developed using a multiplatform graphics 

engine. It is responsible for the management of different protocols based on 2D/3D graphic 

engine. The hardware interface module and AEnima communicate via TCP/IP connection. 

Steady-state visual evoked potential (SSVEP) and motor imagery BCI systems are presented as 

example applications to show the capabilities of BCI++ (Perego, Maggi, Parini, & Andreoni, 

2009). 

BioSig 

The BioSig is one of the oldest MATLAB-based toolboxes for offline analysis of EEG and 

ECoG signals. It has a free and open-source comprehensive library for biomedical signal 

processing. Along with MATLAB, it is also compatible with Octave. Most of the functions can 

be used in both MATLAB and Octave. The library has many statistics and time series analysis 
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tools, including classifiers, cross-validation, adaptive autoregression, blind source separation, 

common spatial pattern, etc. (Schlögl & Brunner, 2008). 

xBCI 

xBCI is a generic platform to build real-time BCI systems. The platform was developed 

using C/C++ language. It supports multithreaded parallel processing and online data 

classification. xBCI provides a graphical user interface-based diagram editor to design the 

systems efficiently. xBCI has a dependency on BioSig for C/C++ toolbox, which saves and loads 

EEG data. The framework was validated using two different BCI systems: motor imagery based 

BCI and steady-state visual evoked potential (SSVEP) protocol based BCI (Susila, Kanoh, 

Miyamoto, & Yoshinobu, 2010). 

OpenViBE 

OpenViBE is a general-purpose software which allows user to build and test BCI 

systems. It has a unique approach called visual programming, which distinguishes it from other 

BCI platforms. This visual programming enables users to use the platform without the 

knowledge of programming. OpenViBE has dedicated tools for virtual reality applications. It 

contains tools for visualization and feedback based on virtual reality and 3D display. The graphic 

interface is easy to use for developing BCI systems. The key features of the software are 

illustrated in two virtual reality-based BCI applications. In these experiments, the user moves a 

virtual object through real or imagery motor movements (Renard, et al., 2010). 

FieldTrip 

FieldTrip is a comparatively new MATLAB based EEG, MEG, and other 

electrophysiological signal processing toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). 

FieldTrip provides algorithms for time-frequency analysis using multitapers, source 
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reconstruction, event-related potential study, and statistical inference. However, it does not have 

a graphical user interface; the user needs to write scripts to use the functions.   

Brainstorm 

Brainstorm is a platform for the real-time analysis of brain signals. This toolbox contains 

an interactive user-interface that facilitates non-programming users to use the software. 

Brainstorm allows multimodal signal recording, artifact detection and correction, visualization 

along with 2D and 3D surface mapping, source modeling, time-frequency analysis using Morlet 

wavelet, Fast Fourier Transform and Hilbert transform, functional connectivity, pattern analysis 

using machine learning, etc. It can remove common artifacts such as eye blinks, heartbeats, 

powerlines, etc. Brainstorm applies signal space projection to remove ocular and cardiac 

artifacts. The software has been developed using MATLAB and Java. However, researchers can 

use it without having a commercial MATLAB license (Tadel, Baillet, Mosher, & Pantazis, 

2011).  

Table 2 lists the most common BCI software tools written in MATLAB and C/C++ 

languages. 

Toolbox 

Name 

Brain 

Signal 

Applications Online/O

ffline 

Analysis 

User 

Interfa

ce 

Platfo

rm 

Licen

se 

Operatin

g System 

EEGLAB EEG, 

MEG 

Continuous and 

Event-related 

analysis, 

Independent 

Component 

Analysis, Time-

Frequency 

Analysis, Artifact 

Rejection, Data 

Visualization 

Realtime  Yes MAT

LAB 

BSD Windows

, MAC, 

Linux 

BCILAB EEG, 

MEG 

Signal Processing, 

Feature Extraction, 

Realtime Yes MAT

LAB 

GPL Windows

, MAC, 

Linux 
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and Machine 

Learning 

g.BCIsys EEG, 

ECoG 

Simulink blocks for 

Feature Extraction 

and Classification 

Realtime Yes MAT

LAB/

Simul

ink 

Propr

ietary 

Windows

, Linux 

BCI2000 EEG Data Acquisition, 

Stimulus 

Presentation, Brain 

Monitoring  

Realtime Yes C++ GPL Windows

, MAC, 

Linux 

OpenViBE EEG Visual Dataflow 

Programming, 2-D 

Visualization, 

Virtual Reality 

Realtime Yes C++ LGP

G 

Windows

, MAC, 

Linux 

BCI++ EEG Signal Acquisition, 

Storage, 

Visualization, Real-

Time Execution 

Realtime Yes C/C+

+ 

GPL Windows 

xBCI EEG Data Acquisition 

(DAQ), Data 

Processing, 

Classifiers, 

Visualization 

Realtime Yes C++ GPL Windows

, Linux 

BioSig EEG, 

ECoG, 

ECG, 

EOG, 

EMG 

Data Acquisition, 

Artifact Rejection, 

Feature Extraction, 

Classification, Data 

Visualization 

Offline No MAT

LAB/

OCT

AVE 

GPL Windows

, macOS, 

Linux 

FieldTrip EEG, 

MEG, 

iEEG, 

NIRS 

Time-Frequency 

Analysis Using 

Multitapers, Source 

Reconstruction, 

Event-Related 

Potential Analysis, 

And Statistical 

Inference 

Realtime No MAT

LAB 

GPL Windows

, macOS, 

Linux 

Brainstorm EEG, 

MEG, 

fNIRS

, 

ECoG 

Signal recording, 

Visualization, 

Source modeling, 

Time-Frequency 

analysis, Functional 

Connectivity 

Realtime Yes MAT

LAB 

GPL Windows

, macOS, 

Linux 

 

Table 2: MATLAB and C/C++ based Brain-Computer Interface Toolboxes 
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Brain-Computer Interface Toolboxes based on Python 

The following BCI toolboxes are based on the Python platform. They are listed in PyPI 

and GitHub repositories. 

MNE-Python 

MNE-python is a software package for Electroencephalography (EEG) and 

Magnetoencephalography (MEG) signal processing. MNE data analysis tool covers all phases of 

EEG and MEG analysis. MNE-python is a branch of MNE software projects which also includes 

MNE-C, MNE-CPP, MNE-MATLAB. The default data format of MNE for FIF, it also supports 

various other types of data formats, i.e., European Data Format (.edf), Biosemi (.bdf), 

BrainVision, etc. MNE-python has dependency on SciPy and NumPy. However, to achieve full 

functionality, Matplotlib, Mayavi, PySurfer, Scikit-learn, Numba, NiBabel, Pandas, Picard, 

DIPY, Imageio, PyVista are required. MNE provides an Independent Component Analysis (ICA) 

class that implements the ICA algorithm to remove the EEG or MEG artifacts and noise. ICA 

decomposes a multivariate signal into statistically independent subcomponents. A significant 

application of ICA is the reduction of signal noises by making the corresponding subcomponent 

to zero. MNE-Python supports FastICA, which is an ICA technique available in Scikit-Learn. 

Filtering the raw signal into a specific frequency of interest is a significant part of the EEG & 

MEG signal preprocessing. MNE's filter function supports both finite impulse response (FIR) 

and infinite impulse response (IIR) filters. MNE provides an EEG and MEG dataset collected 

from Martinos Center of Massachusetts General Hospital. In the recording experiment, both 

visual and auditory stimulation were presented in a random sequence. The EEG data were 

collected using 60 electrodes simultaneously, and the MEG data were collected using the 306 

channel Neuromag Vector View MEG system. MNE-Python works with three types of data 
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structures: raw, epoch, evoked. The recorded data without any preprocessing is called raw data. 

Epoch data are the segmented raw data; they are extracted from the raw format in each 

stimulation event. Averaging epoch data generates evoked data (Gramfort A. , et al., 2014). 

Wyrm 

Wyrm is a brain-computer interface software written in Python. It has a set of functions 

for preprocessing, feature extraction, and classification. It can be used for the motor imagery 

movement decoding and event-related potential analysis (Venthur, Dahne, Hohne, Heller, & 

Blankertz, 2015). It supports both real-time and offline research. Wyrm works together with two 

different python packages named Mushu and Pyff. The Pyff works as a cross-platform 

framework to perform neuroscientific experiments. Pyff is under the General Public License 

(GNU). Pyff provides a pythonic platform for easy development of feedback applications and a 

set of useful, high-quality stimulus presentations (Venthur, et al., 2010). Mushu is another 

python-based signal acquisition software for EEG data streaming. Mushu serves as a unified 

interface and is placed between the amplifier for the raw EEG data acquisition. After reading and 

converting the data, it sends the data to the BCI system (Venthur & Blankertz, Mushu, a free- 

and open source BCI signal acquisition, written in Python, 2012). 

Eelbrain 

Eelbrain is a python-based toolbox for statistical analysis of EEG and MEG signals 

(Brodbeck, Brooks, Das, & Reddigari, 2019). Eelbrain package has a Var class that works as a 

container for one-dimensional scalar data. For multidimensional data, the Eelbrain software uses 

NDVar. NDVar associates the description of dimensions with the data. Eelbrain provides a user 

interface application developed using a cross-platform user interface library called wxPython. 
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YASA 

Yet another spindle application (YASA) is a python tool for sleep analysis. YASA has 

functions for the spindle, slow-wave, and rapid eye movement detection. It works with EEG and 

EOG signals. 

Visbrain 

Visbrain is a python package developed for brain signal visualization. The sleep module 

of the Visbrain package is dedicated to visualizing and analyzing polysomnographic data 

(Combrisson, et al., 2017). It provides spindle and slow wave detection techniques from sleep 

rhythms. In Visbrain’s sleep module, sleep signals are measured in 30 seconds of epochs 

(McGrogan, Braithwaite, & Tarassenko, 2001). The package supports European Data Format 

(.edf), Micromed (.trc), Brain Vision (.eeg), and Elan (.eeg). 

Wonambi 

Wonambi is a package for electrophysiological data analysis written in Python. Wonambi 

package requires the use of NumPy and SciPy libraries. It also has optional dependencies on 

PyQt5, python-vlc, vispy, h5py, mne, nibabel, tensorpac, and fooof 1.0. Wonambi comes with a 

graphic interface that enables users to score sleep stages. Wonambi has functions for time-

frequency analysis like short-time Fourier transform and wavelet transform. 

SSVEPY  

SSVEPY is a package for steady-state evoked EEG data processing. SSVEPY can 

perform offline analysis on visual, auditory, thermo-sensory signals. It has a dependency on 

MNE and h5py. 
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Nilearn 

 Nilearn is a machine learning-based python toolbox for multivariate analysis of neuroimaging 

data. Nilearn takes advantage of the scikit-learn module for pattern analysis, classification, and 

decoding. Machine learning in neuroimaging can help to discriminate the individuals who are at 

future risk of psychiatric disorders in the future (Mourão-Miranda, et al., 2012). Nilearn applies a 

machine learning model for Multi-Voxel Pattern Analysis (MVPA) and fMRI data decoding. 

Nilearn performs data masking by using a mask to get the time series data from the NiftiImage 

object. Data masking is the process of generating a similar substitute for the actual data. Data 

masking is to protect the original data and reduce the risk of data breaches. 

Nitime 

 Nitime is a python package for analyzing experimental fMRI data in time series. Nitime can 

perform spectral estimation from fMRI data. The experimental fMRI data usually contain a wide 

range of the spectrum. So, the data preprocessing is necessary to extract the vital part from the 

signal. 

 Table 3 lists the existing python-based brain-computer interface software tools. 

Toolbox Name Brain Signals Applications 

MNE Python EEG, MEG, 

sEEG, ECoG, 

fNIRS 

Data Visualization and Preprocessing, Source 

Estimation, Time-Frequency Analysis, Connectivity 

Analysis 

WYRM EEG Filtering, Feature Extraction, Classification 

EELBRAIN EEG, MEG Statistical Analysis of EEG and MEG 

YASA (Yet 

Another Spindle 

Algorithm) 

EEG, EOG, 

Sleep 

Sleep analysis, Spectral Analysis, Spindle, Slow-

wave, REM detection 

Visbrain EEG, Sleep Sleep Analysis, Spindle, Slow-wave, REM detection 

Wonambi EEG, ECoG, 

iEEG, sleep 

Sleep Staging, Visualization, Slow-wave detection 
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SSVEPY EEG Steady-State Visually Evoked Potential Analysis 

Nilearn fMRI Mutli-Voxel Pattern Analysis 

Nitime fMRI Spectral Estimation 

 

Table 3: Existing Python based Brain-Computer Interface Packages 
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CHAPTER IV 

PROPOSED BRAIN-COMPUTER INTERFACE TOOLBOX 

A Brain-Computer Interface toolbox called MEDUSA is proposed. Table 4 describes the 

features of the proposed toolbox. 

Features Descriptions Data type 

Hands Vs. Feet Imagery 

Movement Detection from EEG 

Classification accuracy of hands vs. feet 

motor imagery movement detection 

EEG 

Common Spatial Pattern of Motor 

Imagery Movement 

Plotting of common spatial pattern of 

pinky vs. tongue imagery movement 

ECoG 

Pinky Vs. Tongue Imagery 

Movement Decoding from ECoG 

Decoding of pinky vs. tongue motor 

imagery movement 

ECoG 

Slow Wave Sleep Computation Estimating slow waves from sleep rhythms EEG 

Sleep Spindle Identification Sleep spindle detection EEG 

Rapid Eye Movement (REM) 

Detection 

Detection of rapid eye movements EOG 

Speech Envelope Reconstruction 

from EEG 

Speech reconstruction from EEG EEG 

SSVEP Epoch Classification Epoch classification from visual 

stimulation 

EEG 

 

Table 4: Features of the Proposed BCI Package 
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Graphical User Interface 

Graphical User Interface works as a flexible tool for conveniently implementing a new 

operating protocol. So, a user interface is necessary to simplify user applications. The popular 

Python-based Graphical User Interface (GUI) frameworks are PyQT, Tkinter, Kivy, wxPython, 

etc. Among these frameworks, Kivy can take full advantage of the dynamic nature of Python. It 

is an Open Graphics Library (OpenGL) released under MIT license. Kivy also enables the 

developers to design a cross-language and cross-platform user interface. 

The brain-computer interface toolbox MEDUSA has an interactive Graphical User 

Interface for neural signal visualization and analysis. The user interface has been designed using 

Kivy graphic library in the Python platform. The user interface includes classical user interface 

widgets, i.e., Button, Label, and complex user interface widgets, i.e., FileChooser, Popup. Figure 

12 shows the MEDUSA, the developed brain-computer interface toolbox.  
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(a) 
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(b) 
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(c) 

Figure 12: Developed Python-Based Brain-Computer Interface Toolbox (MEDUSA) 

In the above figures, only the hands vs. feet imagery movement detection from EEG 

feature is shown. (a) The MEDUSA toolbox's top window shows eight different features (b) 

Popped up window when the corresponding feature is selected (c) Output of the feature after 

running the program. 

Performance Analysis 

To compare the performance of the algorithms, some criteria are needed. These are 

several parameters for performance evaluation. 



 

42 
 

Sensitivity =
𝑁𝑜 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑜 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑜 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Specificity =
𝑁𝑜 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑁𝑜 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑜 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

False Positive Rate =1-Specificity =
𝑁𝑜 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑜 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑜 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

False Positive Proportion = 
𝑁𝑜 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑜 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑜 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

False Positive Amount = 
𝑁𝑜 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑜 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑜 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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CHAPTER V 

RESULT ANALYSIS 

Motor Imagery Movement Analysis 

The most common brain-computer interface task is the motor imagery movement 

decoding. Motor imagery is defined as mentally imagining a given body action, i.e., hand, feet, 

finger, or tongue movement. In motor imagery, the subjects imagine the movements of body 

parts instead of doing them. Experimental results show that motor imagery exhibits the same 

neural mechanisms involved in motor control of actual actions (Decety, 1996). Motor imagery 

movement generates sensorimotor rhythms (SMR). It is possible to decode the activities from the 

left hand, right hand, feet, and tongue imagery movements data. The respective cortical areas of 

the signals generated by the left hand, right hand, feet, and tongue imagery movements are 

comparatively large. For example, the left hand, right hand, and foot motor imagery data 

originates from C3, C4, and Cz areas of the brain, respectively. These cortical areas are easily 

distinguishable. So, motor imagery BCI applications are usually developed based on these body 

parts imagery movements (Schlögl, Lee, Bischof, & Pfurtscheller, 2005).  

Hands Vs. Feet Imagery Movement Detection from EEG 

For this decoding, both fists and both feet imagery movements are used. The EEG data 

used here is taken from PhysioNet (Goldberger, et al., 2000). The data is in European Data 

Format (EDF+). The 64 channel EEG signals were recorded using 64 electrodes. The electrodes 

were placed following the international 10-10 system. 
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Each data is sampled at 160 Hz. Data durations are 120 seconds (Schalk, McFarland, 

Hinterberger, Birbaumer, & Wolpaw, 2004). Both fists and both feet movements are recorded in 

runs 5, 6, 9, 10, 13, and 14. T0, T1, or T2 annotate each motor imagery task. T0 means that the 

subject is resting. T1 represents both fists' onset of motion, and T2 represents both feet' onset of 

movement.  

This program takes the first subject and trial numbers 6, 10, and 14 as input. It determines 

whether the person imagined movement of either both hands or both feet on that particular event. 

Part of the original data was divided into test sets (X_test, y_test) and train sets (X_train, 

y_train). ShuffleSplit function from python sci-kit learn library is used to split the dataset. 

ShuffleSplit function shuffles the data samples and then split the raw data into train and test sets. 

The model is trained using train data, the parameters are optimized using cross-validation, and 

lastly, performance is tested using test data. 

The Linear discriminant analysis (LDA) classifier is implemented to classify these two 

classes (both hands movement vs. both feet movement). The transformer uses the training data 

and training labels and returns a transformed version of training data. LDA classifier is trained 

with the feature vector computed from the train data. When the training is finished, the trained 

LDA classifier is used to classify the test data's feature vector to obtain the final result. Finally, 

each trial is classified from the results of the LDA classifier. Figure 13 represents the machine 

learning model of the decoding algorithm. 
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Figure 13: Machine Learning Model of the Decoding Algorithm 

Figure 14 shows the classification accuracy score of the hands vs. feet imagery 

movement data. 

 

Figure 14: Classification Score of the Hands Vs. Feet Motor Imagery Movement Data 
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Common Spatial Pattern of Motor Imagery Movement  

The feature calculates the common spatial pattern of motor imagery movement using a 

color bar. The Electrocorticography (ECoG) dataset was taken from BCI Competition III. The 

experiment was designed to record the ECoG signal on the right motor cortex of the subject. In 

this recording experiment, the person had to imagine that he/she was moving his/her small finger 

of the left hand (pinky) or tongue according to the cue displayed on the screen. The data contains 

278 trials of training data with labels and 100 trials of test data in which labels are unknown. 

Each trial included either an imagined finger or tongue movement and was recorded for 3 

seconds. The ECoG data was in the microvolts range and was sampled in 1 kHz sampling 

frequency. As a visual cue is shown to the subject, there could be a possibility of the visual 

evoked potential in the recordings. That is why the recording was taken after 0.5 s of the visual 

cue's end (Lal, et al., 2004).  

This algorithm performs offline data processing, which means the complete data set is 

available before filtering. This offline processing allows for a non-causal filtering approach. 

Although Infinite Impulse Response (IIR) filters do not have a linear phase, the zero-phase 

digital filtering can eliminate the nonlinear phase distortion. The zero-phase transfer function has 

no phase component; however, it must be a non-causal filter. A non-causal forward and 

backward filter is used for the analysis of the dataset. A classical Butterworth IIR filter generates 

the filter coefficients. After forward filtering, the filtered sequence is time-reversed. Then it runs 

back through the same filter and is reversed again. The combined filter performs zero-phase 

filtering, and the final output sequence has zero phase distortion. So, the forward and backward 

filter can reduce transitional effects at the beginning and end of the signal. The common spatial 
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pattern method is adopted for both training and test data. Figure 15 shows the common spatial 

pattern of the pinky vs. tongue imagery movement ECoG data. 

 

Figure 15: Common Spatial Pattern of Pinky vs. Tongue Movement 

Pinky Vs. Tongue Imagery Movement Decoding from ECoG 

Support Vector Machine Classifier is used to classify the pinky vs. tongue movement. 

The linear kernel is selected for the support vector machine. The dataset was taken from BCI 

competition III, where the winner achieved 91% accuracy. This method achieves an accuracy of 

94 % for that data set, comparing the predicted labels with the actual labels. Finally, a confusion 

matrix is plotted shown in Figure 16. 
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Figure 16: Confusion Matrix of Pinky vs. Tongue Imagery Movement Decoding 

Sleep Signal Analysis 

While our body is disconnected from the environment during sleep, but our brain remains 

active. Electroencephalography (EEG) can measure electrical signals that the brain produces 

while sleeping. These signals are in different magnitudes and frequency ranges. They can be 

categorized in Delta (<4 Hz), Theta (4-7 Hz), Alpha (8-13 Hz), Beta (14-30 Hz), and Gamma 

(>30 Hz) rhythms depending on their frequency spectra. 

Sleep stages can be divided into two major parts: Non-rapid Eye Movement sleep 

(NREM) and Rapid Eye Movement (REM) sleep. The NREM stage's EEG signal frequency is 

less than 30 Hz, and the REM stage is greater than 30 Hz. Most of the portions of the sleep are 

NREM sleep. K-Complex, sleep spindle, and slow-wave constitute the NREM sleep part. K-

complexes are defined as brief negative waves followed by a positive component and a final 

negative peak (Combrisson, et al., 2017). K-complex occurs in the 2nd stage of NREM sleep. 
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Non-rapid Eye Movement sleep (NREM) can be further divided into three parts: stage 1 

(N1), stage 2 (N2), and stage 3 (N3). In stage 1, subjects are relaxed and have slow eye 

movements. EEG signal shows Alpha rhythm (8-13 Hz) in stage 1. This stage appears when the 

eyes are closed and disappears at eye-opening. EEG recordings in stage 2 show theta activity (4-

7 Hz). Sleep spindles and k complexes begin to occur in this stage. Stage 3 is the deepest part of 

NREM sleep; it is also known as slow-wave sleep (SWS). This stage consists of the delta 

rhythm, which is less than 4 Hz. Figure 17 shows the different stages of sleep, known as 

hypnogram. The EEG, EOG, EMG recordings are visually scored to get hypnogram data. 

Qualitative data, such as the duration of each sleep stage, can be measured from a hypnogram. 

The hypnogram consists of Wake, N1, N2, N3, REM, and artifacts. 

 

Figure 17: Sleep Stages Hypnogram 

Studies suggest that adequate sleep hours play a significant role in learning and memory 

consolidation. Memory consolidation is defined as saving new information in memory. 

Consolidation during sleep brings changes in-memory representations quantitatively and 
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qualitatively (Diekelmann & Born, 2010). Autism is also associated with abnormalities in sleep 

patterns (Tessier, et al., 2015). 

Slow Wave Computation 

Slow-wave oscillation refers to the neural activity of synchronized slow oscillations. 

Slow-wave sleep is found in non-rapid eye movement stage 3 sleep (N3), the deepest sleep stage. 

The EEG signal of slow-wave has characteristics of high amplitude and low frequency. Delta 

rhythm, prominent in young adults, is found in slow-wave sleep. The frequency of delta waves 

ranges from 0.5 Hz to 4 Hz. 

Slow-wave oscillation is comprised of a hyperpolarized phase and a depolarized phase. 

The hyperpolarization phase is known as the downstate. All cortical neurons are silent during 

that period. The depolarization phase, which is known as the upstate, comes after the 

hyperpolarization state. At this state, the thalamocortical system is busy with synaptic activity. 

Cortical neurons have increased firing rates during slow-wave oscillation are as high as during 

waking or REM sleep. The membrane potential fluctuations are also higher than wakefulness 

(Steriade & Timofeev, Natural waking and sleep states: a view from inside neocortical neurons, 

2001). Slow waves are generated due to the intrinsic properties of thalamocortical neurons. 

Timofeev et al.’s in vivo study show the origin of slow-wave activity due to the interplay of 

intrinsic currents (Timofeev, Grenier, Bazhenov, Sejnowski, & Steriade, 2000). 

The algorithm used here to identify slow waves is based on the ‘Massimini2004’ 

algorithm (Massimini, Huber, Ferrarelli, Hill, & Tononi, 2004). Massimini et al. designed an 

automatic detection algorithm for slow-wave detection. In this algorithm, the scalp is divided 

into four non-overlapping gray areas. Each area consists of several electrodes. The recorded 

signals of these electrodes of each region are averaged. The detection algorithm applied some 



 

51 
 

criteria over these four locally averaged signals. The first criterion is that the slow-wave portion 

should have two zero crossings separated by more than 300 ms but less than 1000 ms. Secondly, 

the slow-wave's negative peak voltage between the negative and positive zero crossings should 

be less than -80 microvolts. Thirdly, the peak to peak amplitude should be higher than 140 

microvolts. When any of these four averaged signals pass all the criteria, the algorithm counts 

the event as a slow wave oscillation. In Figure 18, the left portion shows the four gray areas 

consisting of electrodes using the 10-20 system. The figure's right side presents the three criteria 

(a, b, c) for detecting slow waves. 

 

Figure 18: Slow Wave Detection Method 

This algorithm detects slow waves on a single-channel EEG signal. The sleep is recorded 

for 6 hours in Cz, Fz, and Pz channels. The data is sampled at 100 Hz. A 30 seconds epoch from 

the Fz channel is taken for analysis. The slow-wave detection method uses a butter-worth filter 

as a detection filter. The Bandpass frequency is set to 0.1 Hz - 4 Hz. The duration for the trough 

is set to 0.25 s to 1 s. The negative trough amplitude is set to -80 microvolts, and peak to peak 

magnitude is kept at 140 microvolts. When a zero crossing is found with a subsequent peak, the 

algorithm adds it to an event. The algorithm checks whether the event is within the amplitude 

limit. The event is discarded if another zero crossing is not found within the set duration or the 
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peak to peak amplitude is less than the set value. When the event passes all criteria, the event is 

counted as a slow wave. The computed slow waves are shown in Figure 19. A total of 21 

instances of slow-wave are found during the 30 seconds epoch of non-rapid eye movement sleep. 

 

Figure 19: Computed Slow Waves from EEG Signal 

Sleep Spindle Computation 

Sleep spindles are defined as bursts of neural activity in 12-14 Hz frequency 

(Rechtschaffen & Kales, 1968). Thalamic neurons generate spindle waves. Sleep spindles have a 

profound impact on cognitive learning and memory. Thalamocortical and neuro-modulatory 

dysfunction, which occurs in schizophrenia, is linked to sleep spindle alteration. Research 

conducted on schizophrenic patients shows an unusual reduction in sleep spindle activity. Sleep 

spindle number, amplitude, duration have decreased significantly in schizophrenic patients 

(Ferrarelli, et al., 2007). 

The automatic sleep spindle detection algorithm implemented here uses continuous 

wavelet transform followed by amplitude threshold and duration criteria. The frequency, power 
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threshold, and duration parameters are obtained from previous literature (Devuyst, Dutoit, 

Stenuit, & Kerkhofs, 2011) (Huupponen, et al., 2007) (Huupponen, et al., 2000). At first, the 

signal is wavelet transformed by convoluting with a Morlet wavelet. The central frequency band 

is kept at 12–14 Hz. After performing the wavelet transformation, the amplitude part is compared 

with the amplitude threshold. Here, 

Amplitude threshold = Mean amplitude + 2.0 * standard deviation of amplitude (4) 

The time indices are computed where the signal amplitude exceeds the threshold. The 

sum of the absolute power of delta (<4Hz), theta (4–8Hz), alpha (8–12Hz), sigma (12–16Hz) 

waves are computed. Then each wave is divided by the resulting sum of absolute power so that 

the total sum of powers of these four waves in each instant is equal to 1. These resulting values 

are called normalized powers of the frequency bands. The normalized power of the Sigma band 

indicates the relative spindle power, which is obtained using the following equation. 

 
Normalized power of Sigma band =

∫ 𝑆(𝑓,𝑡)𝑑𝑓
16
12

∫ 𝑆(𝑓,𝑡)𝑑𝑓
40
0.5

 
(5) 

Where S = Spectrogram of the signal 

Similar to amplitude thresholding, a power threshold is also applied using the Sigma 

band's normalized power. Time indices are calculated where the normalized power exceeds the 

power threshold (= 0.2). Finally, a criterion is used to remove the events with a duration of <0.5 

seconds or >2 seconds. Figure 20 shows the detected spindles from EEG data. 
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Figure 20: Spindle Detection from EEG 

The algorithm detected three spindles during non-rapid eye movement stage-3 sleep. The 

average duration of spindles is 1.03 seconds. The first spindle starts at 7.31 second and ends at 

8.94 seconds, the second spindle starts at 17.43 second and ends at 18.27 second, and the third 

spindle starts at 23.54 second and ends at 24.16 seconds. 

Rapid Eye Movement Detection 

The potentials generated due to Eye Movement while sleeping are two types: one consists 

of slower components known as slow eye movement (SEM), another consists of fast movements 

known as Rapid Eye Movements (REM). REM occurs after NREM sleep. During REM sleep, 

our brain is found as active as an awake condition. The EEG signal shows high Gamma rhythmic 

(>30 Hz) frequency at the REM stage. It is perceived that dream happens at this REM stage. A 

human spends 5-6% of his life in REM sleep on average. REM sleep has a deep impact on 

declarative and procedural memory consolidation. Declarative memory is defined as learning 

fact-based information, for example, the recipe of a steak. The memory-related to how to do a 
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specific task is known as procedural memory, like playing a musical instrument. REM performs 

synaptic consolidation through specific neuromodulation patterns and electric field oscillations 

(Diekelmann & Born, 2010).  

Electrooculogram (EOG) signal measures the rapid eye movement during REM sleep. 

The duration of the EOG dataset is 50 seconds. The data was sampled at 256 Hz. As manually 

counting REM sleep is a time consuming and subjective process, an automated detection 

technique is used for REM. This REM detection method needs both left outer canthus EOG 

(LOC) and right outer canthus EOG (ROC) data. The method filters the LOC and ROC signal 

and performs thresholding on the negative product of LOC and ROC data (Agarwal, Takeuchi, 

Laroche, & Gotman, 2005). The threshold value is set to 10 (µV)2. The frequency range for 

REM is set to 0.5 to 5 Hz. The output returns the REM characteristics, i.e., start, end, duration, 

etc. The amplitudes of LOC and ROC at REM peak are also detected. A total of 23 REM 

instances are detected. REM starts at 8.96 s and ends at 49.91 s. The duration of the REM parts 

ranges from 0.3 to 1.45 seconds. The computed rapid-eye movements are shown in Figure 21. 
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Figure 21: REM Detection from Electrooculography Data 

Receptive Field Prediction 

The receptive field is a part of sensory space that shows the neural response when 

stimulated. Receptive fields are known for neurons of the auditory system, the somatosensory 

system, and the visual system. The human auditory system can detect and identify the sound of 

20 to 20,000 Hz range. The brain can process the speech signal continuously in a natural 

environment. If the stimulus and measured response are known, then it is possible to predict the 

measured response from the stimulus by computing a response function (Brodbeck, Presacco, & 

Simon, Neural source dynamics of brain responses to continuous stimuli: Speech processing 

from acoustics to comprehension, 2018). When an acoustic signal enters the human ear, it 

undergoes a complex series of transform. The vibration of the acoustic signal stimulates the 

Cochlea to produce nerve impulses. The signal is then transformed into a spectrogram of various 

frequency ranges (Yang, Wang, & Shamma, 1992). The auditory nervous system maps these 

frequency bands into the neural response. This process is a complex version of the Temporal 
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Response Function and requires multiple variables. Therefore, it can be represented by a 

multivariate Temporal Response Function (mTRF).  

Temporal Response Function (TRF) is a filter that relates the neural response to sensory 

stimuli. EEG and MEG analysis are using TRF widely recently.  Temporal Response Function 

(TRF) is modeled by developing a relationship between instantaneous neural response r(t,n) to 

stimulus property s(t). If we take the TRF as w(τ, n), 

 r(t, n) = ∑w(τ, n)s(t −  τ)

τ

+  ϵ(t, n) 
(6) 

Where, ϵ(t, n) = residual response.  

Temporal Response Function is calculated by reducing the mean squared error between 

the actual neural response, r(t, n) and predicted natural response, r̂(t, n). 

 Min ϵ(t, n) = ∑[r(t, n) − r̂(t, n)]2

t

 
(7) 

Sensory neurons work as stimulus-response transducers for sensory stimulation. Sensory 

neurons sum up the signals from different receptive fields and stimuli from a different time. This 

neurophysiological process is known as reverse correlation (Ringach & Shapley, 2004). The TRF 

is calculated by solving the equation using reverse correlation (DeBoer & Kuyper, 1968). 

Reverse correlation is solved by the following matrix operation, which is the ordinary least 

square equation. 

 𝑤 = (𝑆𝑇𝑆)−1𝑆𝑇𝑟 (8) 

Where, S = lagged time series of the stimulus property, s 
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S = 

[
 
 
 
 
 
 
 
 
 
𝑠(1 − τ𝑚𝑖𝑛) 𝑠(−τ𝑚𝑖𝑛) ⋯ 𝑠(1) 0 ⋯ 0

⋮ ⋮ ⋯ ⋮ 𝑠(1) ⋯ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ 𝑠(1)

𝑠(𝑇) ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 𝑠(𝑇) ⋯ ⋮ ⋮ ⋯ ⋮
⋮ 0 ⋯ ⋮ ⋮ ⋯ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑠(𝑇) 𝑠(𝑇 − 1) ⋯ 𝑠(𝑇 − τ𝑚𝑎𝑥)]

 
 
 
 
 
 
 
 
 

 

(9) 

 

TRF is calculated throughout maximum and minimum time lags. The time window is 

defined as  τ𝑤𝑖𝑛𝑑𝑜𝑤 = τ𝑚𝑎𝑥 − τ𝑚𝑖𝑛. A τ𝑤𝑖𝑛𝑑𝑜𝑤 × 𝑁 matrix will express the TRF. For 

multivariate analysis, frequency spectrum f = 1…. F will be added as a variable. So, speech 

signal spectrogram is represented by s(t, f) and mTRF by w(f, τ, n) respectively. The resulting 

mTRF becomes Fτ𝑤𝑖𝑛𝑑𝑜𝑤 × 𝑁 dimension matrix (Crosse, Di Liberto, Bednar, & Lalor, 2016) 

Speech Envelope Reconstruction 

Non-invasive studies can be used for speech processing applications to various hearing 

and language disorders like Dyslexia and Attention-deficit/hyperactivity disorder (ADHD) 

(Guttorm, et al., 2005) (Johnstone, Barry, & Clarke, 2013). In this feature, a speech envelope has 

been reconstructed from EEG. The stimulus activity of neurons is predicted from the EEG data. 

The decoding model establishes a relation between the EEG and speech signal. It provides a 

connection between the neural response and sensory stimulus by creating a stimulus 

reconstruction model. 

This experiment's dataset is 128 channel EEG responses of human subjects while 

listening to an audiobook continuously. The subjects listened to both the natural speech and 

time-reversed version of the audiobook (Di Liberto, O’Sullivan, & Lalor, 2015). Total 28 
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segments of audio signals, each having 155s, were used as stimuli. The EEG data is sampled at 

512 Hz.  

At first, the speech dataset and EEG sensors' locations are loaded. Ridge regression 

model is used as a base estimator. Ridge regression is a type of linear regression. But the 

coefficients of Ridge regression are calculated by ridge estimator instead of ordinary least 

squares estimator. The ridge estimator is analogous to the ordinary least square equation with a 

regularization parameter λ added to the loss function. 

 𝑤 = (𝑆𝑇𝑆 + 𝜆𝐼)−1𝑆𝑇𝑟 (10) 

Regularization, also known as a penalty, minimizes the variance of the estimates by 

introducing a small amount of bias. Although ridge regression is slightly biased, it has a lower 

variance than the ordinary least square estimator. So, the ridge estimation method provides 

improved efficiency in estimation problems. In the case of λ = 0, the ridge estimator becomes the 

ordinary least square method.  

The regularization parameter λ is selected such that it generates the lowest Mean Squared 

Error. The Ridge regression model is fitted using the training EEG signal and training speech 

data. 3-Fold cross-validation is performed. Finally, the speech signal envelope is predicted from 

the test EEG signal. The actual stimulus signal and predicted envelopes are plotted side by side 

in Figure 22. 
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Figure 22: Speech Envelope Reconstruction from EEG 

SSVEP Epoch Classification 

This feature classifies epochs of EEG evoked frequency data. The data is visual evoked 

EEG signal while displaying human faces to the subject. 

When the brain is given stimulation, i.e., light or sound, the brain responds by electrical 

activity. The response is known as an evoked response, and the generated potential is called 

evoked potential. Visual evoked potential, especially the steady-state visual evoked potential 

(SSVEP), is one of the most used signals of BCI analysis. Constant frequency visual stimulus 

signal affects the EEG signal coming from the brain cortex. SSVEP is the reflection of visual 

stimulation in brain activity. 
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The data used in this program was generated through visual stimulation using face 

images. The data consists of two classes. The first data class is visual stimulation at 1.2 Hz, and 

the second data class is random visual stimulation. 

The bandpass frequency is set at 0.5 Hz-30 Hz. Support vector machine classifier is 

trained using training data and labels. The average signal-to-noise ratio for each epoch is used as 

the feature. Then the trained classifier is applied to test data. Finally, a confusion matrix is 

presented in Figure 23, which shows the accuracy of the prediction. 

 

 

Figure 23: Confusion Matrix of Epoch Classification 
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CHAPTER VI 

CONCLUSION 

In this work, a Brain-Computer Interface toolbox, MEDUSA, is presented. MEDUSA can 

perform both invasive and non-invasive data analysis. The toolbox supports 

Electroencephalography (EEG), Electrocorticography (ECoG), and Electrooculography (EOG) 

data. Loading and reading data files from standard file formats, i.e., European Data Format (.edf) 

and .mat, are supported by the toolbox. The MEDUSA toolbox is tested using several publicly 

available data such as PhysioNet and Brain-Computer Interface competition III datasets. This 

project's significance is that it provides a common platform for neural signal processing for 

experimental scientists. This research connects the neuroscientist with brain signal analysis 

algorithms through an easy to use and user-friendly graphical user interface.
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