19,789 research outputs found

    A Description Driven Approach for Flexible Metadata Tracking

    Full text link
    Evolving user requirements presents a considerable software engineering challenge, all the more so in an environment where data will be stored for a very long time, and must remain usable as the system specification evolves around it. Capturing the description of the system addresses this issue since a description-driven approach enables new versions of data structures and processes to be created alongside the old, thereby providing a history of changes to the underlying data models and enabling the capture of provenance data. This description-driven approach is advocated in this paper in which a system called CRISTAL is presented. CRISTAL is based on description-driven principles; it can use previous versions of stored descriptions to define various versions of data which can be stored in various forms. To demonstrate the efficacy of this approach the history of the project at CERN is presented where CRISTAL was used to track data and process definitions and their associated provenance data in the construction of the CMS ECAL detector, how it was applied to handle analysis tracking and data index provenance in the neuGRID and N4U projects, and how it will be matured further in the CRISTAL-ISE project. We believe that the CRISTAL approach could be invaluable in handling the evolution, indexing and tracking of large datasets, and are keen to apply it further in this direction.Comment: 10 pages and 3 figures. arXiv admin note: text overlap with arXiv:1402.5753, arXiv:1402.576

    The Research Object Suite of Ontologies: Sharing and Exchanging Research Data and Methods on the Open Web

    Get PDF
    Research in life sciences is increasingly being conducted in a digital and online environment. In particular, life scientists have been pioneers in embracing new computational tools to conduct their investigations. To support the sharing of digital objects produced during such research investigations, we have witnessed in the last few years the emergence of specialized repositories, e.g., DataVerse and FigShare. Such repositories provide users with the means to share and publish datasets that were used or generated in research investigations. While these repositories have proven their usefulness, interpreting and reusing evidence for most research results is a challenging task. Additional contextual descriptions are needed to understand how those results were generated and/or the circumstances under which they were concluded. Because of this, scientists are calling for models that go beyond the publication of datasets to systematically capture the life cycle of scientific investigations and provide a single entry point to access the information about the hypothesis investigated, the datasets used, the experiments carried out, the results of the experiments, the people involved in the research, etc. In this paper we present the Research Object (RO) suite of ontologies, which provide a structured container to encapsulate research data and methods along with essential metadata descriptions. Research Objects are portable units that enable the sharing, preservation, interpretation and reuse of research investigation results. The ontologies we present have been designed in the light of requirements that we gathered from life scientists. They have been built upon existing popular vocabularies to facilitate interoperability. Furthermore, we have developed tools to support the creation and sharing of Research Objects, thereby promoting and facilitating their adoption.Comment: 20 page

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning

    High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    Full text link
    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.Comment: 72 page

    Data management of nanometre­ scale CMOS device simulations

    Get PDF
    In this paper we discuss the problems arising in managing and curating the data generated by simulations of nanometre scale CMOS (Complementary Metal–Oxide Semiconductor) transistors, circuits and systems and describe the software and operational techniques we have adopted to address them. Such simulations pose a number of challenges including, inter alia, multi­TByte data volumes, complex datasets with complex inter-relations between datasets, multi­-institutional collaborations including multiple specialisms and a mixture of academic and industrial partners, and demanding security requirements driven by commercial imperatives. This work was undertaken as part of the NanoCMOS project. However, the problems, solutions and experience seem likely to be of wider relevance, both within the CMOS design community and more generally in other disciplines

    Ambient Multi-Camera Personal Documentary

    No full text
    Polymnia is an automated solution for the creation of ambient multi-camera personal documentary films. This short paper introduces the system, emphasising the rule-based documentary generation engine that we have created to assemble an edited narrative from source footage. We describe how such automatically generated media can be integrated with and augment personally-authored images and videos as a contribution to an individual’s personal digital memory
    corecore