12,331 research outputs found

    Sharp Bounds on Davenport-Schinzel Sequences of Every Order

    Full text link
    One of the longest-standing open problems in computational geometry is to bound the lower envelope of nn univariate functions, each pair of which crosses at most ss times, for some fixed ss. This problem is known to be equivalent to bounding the length of an order-ss Davenport-Schinzel sequence, namely a sequence over an nn-letter alphabet that avoids alternating subsequences of the form ababa \cdots b \cdots a \cdots b \cdots with length s+2s+2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem in differential equations and have since been applied to bounding the running times of geometric algorithms, data structures, and the combinatorial complexity of geometric arrangements. Let λs(n)\lambda_s(n) be the maximum length of an order-ss DS sequence over nn letters. What is λs\lambda_s asymptotically? This question has been answered satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, and Nivasch) when ss is even or s3s\le 3. However, since the work of Agarwal, Sharir, and Shor in the mid-1980s there has been a persistent gap in our understanding of the odd orders. In this work we effectively close the problem by establishing sharp bounds on Davenport-Schinzel sequences of every order ss. Our results reveal that, contrary to one's intuition, λs(n)\lambda_s(n) behaves essentially like λs1(n)\lambda_{s-1}(n) when ss is odd. This refutes conjectures due to Alon et al. (2008) and Nivasch (2010).Comment: A 10-page extended abstract will appear in the Proceedings of the Symposium on Computational Geometry, 201

    Robustness and epistasis in mutation-selection models

    Full text link
    We investigate the fitness advantage associated with the robustness of a phenotype against deleterious mutations using deterministic mutation-selection models of quasispecies type equipped with a mesa shaped fitness landscape. We obtain analytic results for the robustness effect which become exact in the limit of infinite sequence length. Thereby, we are able to clarify a seeming contradiction between recent rigorous work and an earlier heuristic treatment based on a mapping to a Schr\"odinger equation. We exploit the quantum mechanical analogy to calculate a correction term for finite sequence lengths and verify our analytic results by numerical studies. In addition, we investigate the occurrence of an error threshold for a general class of epistatic landscape and show that diminishing epistasis is a necessary but not sufficient condition for error threshold behavior.Comment: 20 pages, 14 figure

    Evolutionary game dynamics in phenotype space

    Get PDF
    Evolutionary dynamics can be studied in well-mixed or structured populations. Population structure typically arises from the heterogeneous distribution of individuals in physical space or on social networks. Here we introduce a new type of space to evolutionary game dynamics: phenotype space. The population is well-mixed in the sense that everyone is equally likely to interact with everyone else, but the behavioral strategies depend on distance in phenotype space. Individuals might behave differently towards those who look similar or dissimilar. Individuals mutate to nearby phenotypes. We study the `phenotypic space walk' of populations. We present analytic calculations that bring together ideas from coalescence theory and evolutionary game dynamics. As a particular example, we investigate the evolution of cooperation in phenotype space. We obtain a precise condition for natural selection to favor cooperators over defectors: for a one-dimensional phenotype space and large population size the critical benefit-to-cost ratio is given by b/c=1+2/sqrt{3}. We derive the fundamental condition for any evolutionary game and explore higher dimensional phenotype spaces.Comment: version 2: minor changes; equivalent to final published versio

    The variance of identity-by-descent sharing in the Wright-Fisher model

    Full text link
    Widespread sharing of long, identical-by-descent (IBD) genetic segments is a hallmark of populations that have experienced recent genetic drift. Detection of these IBD segments has recently become feasible, enabling a wide range of applications from phasing and imputation to demographic inference. Here, we study the distribution of IBD sharing in the Wright-Fisher model. Specifically, using coalescent theory, we calculate the variance of the total sharing between random pairs of individuals. We then investigate the cohort-averaged sharing: the average total sharing between one individual and the rest of the cohort. We find that for large cohorts, the cohort-averaged sharing is distributed approximately normally. Surprisingly, the variance of this distribution does not vanish even for large cohorts, implying the existence of "hyper-sharing" individuals. The presence of such individuals has consequences for the design of sequencing studies, since, if they are selected for whole-genome sequencing, a larger fraction of the cohort can be subsequently imputed. We calculate the expected gain in power of imputation by IBD, and subsequently, in power to detect an association, when individuals are either randomly selected or specifically chosen to be the hyper-sharing individuals. Using our framework, we also compute the variance of an estimator of the population size that is based on the mean IBD sharing and the variance in the sharing between inbred siblings. Finally, we study IBD sharing in an admixture pulse model, and show that in the Ashkenazi Jewish population the admixture fraction is correlated with the cohort-averaged sharing.Comment: Includes Supplementary Materia

    Definition by Induction in Frege's Grundgesetze der Arithmetik

    Get PDF
    This paper discusses Frege's account of definition by induction in Grundgesetze and the two key theorems Frege proves using it

    The Inflation Technique for Causal Inference with Latent Variables

    Full text link
    The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the inflation technique\textit{inflation technique} for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution's incompatibility with the causal structure (of which Bell inequalities and Pearl's instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.Comment: Minor final corrections, updated to match the published version as closely as possibl

    Inference of historical population-size changes with allele-frequency data

    No full text
    With up to millions of nearly neutral polymorphisms now being routinely sampled in population-genomic surveys, it is possible to estimate the site-frequency spectrum of such sites with high precision. Each frequency class reflects a mixture of potentially unique demographic histories, which can be revealed using theory for the probability distributions of the starting and ending points of branch segments over all possible coalescence trees. Such distributions are completely independent of past population history, which only influences the segment lengths, providing the basis for estimating average population sizes separating tree-wide coalescence events. The history of population-size change experienced by a sample of polymorphisms can then be dissected in a model-flexible fashion, and extension of this theory allows estimation of the mean and full distribution of long-term effective population sizes and ages of alleles of specific frequencies. Here, we outline the basic theory underlying the conceptual approach, develop and test an efficient statistical procedure for parameter estimation, and apply this to multiple population-genomic datasets for the microcrustacean Daphnia pulex

    Maximum principle and mutation thresholds for four-letter sequence evolution

    Get PDF
    A four-state mutation-selection model for the evolution of populations of DNA-sequences is investigated with particular interest in the phenomenon of error thresholds. The mutation model considered is the Kimura 3ST mutation scheme, fitness functions, which determine the selection process, come from the permutation-invariant class. Error thresholds can be found for various fitness functions, the phase diagrams are more interesting than for equivalent two-state models. Results for (small) finite sequence lengths are compared with those for infinite sequence length, obtained via a maximum principle that is equivalent to the principle of minimal free energy in physics.Comment: 25 pages, 16 figure
    corecore