8 research outputs found

    A Flexible Modeling Approach for Robust Multi-Lane Road Estimation

    Full text link
    A robust estimation of road course and traffic lanes is an essential part of environment perception for next generations of Advanced Driver Assistance Systems and development of self-driving vehicles. In this paper, a flexible method for modeling multiple lanes in a vehicle in real time is presented. Information about traffic lanes, derived by cameras and other environmental sensors, that is represented as features, serves as input for an iterative expectation-maximization method to estimate a lane model. The generic and modular concept of the approach allows to freely choose the mathematical functions for the geometrical description of lanes. In addition to the current measurement data, the previously estimated result as well as additional constraints to reflect parallelism and continuity of traffic lanes, are considered in the optimization process. As evaluation of the lane estimation method, its performance is showcased using cubic splines for the geometric representation of lanes in simulated scenarios and measurements recorded using a development vehicle. In a comparison to ground truth data, robustness and precision of the lanes estimated up to a distance of 120 m are demonstrated. As a part of the environmental modeling, the presented method can be utilized for longitudinal and lateral control of autonomous vehicles

    Road edge and lane boundary detection using laser and vision

    Full text link
    This paper presents a methodology for extracting road edge and lane information for smart and intelligent navigation of vehicles. The range information provided by a fast laser range-measuring device is processed by an extended Kalman filter to extract the road edge or curb information. The resultant road edge information is used to aid in the extraction of the lane boundary from a CCD camera image. Hough Transform (HT) is used to extract the candidate lane boundary edges, and the most probable lane boundary is determined using an Active Line Model based on minimizing an appropriate Energy function. Experimental results are presented to demonstrate the effectiveness of the combined Laser and Vision strategy for road-edge and lane boundary detection

    Road curb tracking in an urban environment

    Full text link
    Road detection and tracking is very useful in the synthesis of driver assistance and intelligent transportation systems. In this paper a methodology is proposed based on the extended Kalman filer for robust road curb detection and tracking using a combination of onboard active and passive sensors. The problem is formulated as detecting and tracking a maneuvering target in clutter using onboard sensors on a moving platform. The primary sensors utilized are a 2 dimensional SICK laser scanner, five encoders and a gyroscope, together with an image sensor (CCD camera). Compared to the active 20 laser scanner the CCD camera is capable of providing observations over an extended horizon, thus making available much useful information about the curb trend, which is exploited in mainly the laser based tracking algorithm. The advantage of the proposed image enhanced laser detection/tracking method, over laser alone detection/tracking, is illustrated using simulations and its robustness to varied road curvatures, branching, turns and scenarios, is demonstrated through experimental results. © 2003 ISlF

    Improving Ability and Lane Detection of Self-Directed-Car

    Get PDF
    Driverless vehicles are on the move to announcement by Google, which drove more than 500,000 miles on its original model vehicles and further key automakers specify the prospective enlargement in this region with the capability to convert the transportation infrastructure, enlarge access and convey settlement to variety of user. A few users address the anticipated unfinished convenience of self directed cars by 2020 with accessibility to the community by 2040.Certain trust that self-directed car make necessary to renovate the modern transportation that fundamentally removing coincidences andcleaning uptheroadenvironment.Thisstudyunderstandstheeffectsthat self- driving car orroboticvehicletravel demandsandride schemeislikelytohave,without thetypicalobstaclesthatallowsdetectionof vision basedhardwareandsoftware constructionof SDC (self-directed car) technologyandGold(GenericObstacleLaneDetection) toa knowledge-basedsystemtoexpectthepotentialandconsidertheshape,color, balancein organizedenvironmentwithcoloredlane patternswhichisimplemented by a particlefilter. Thealgorithm is implemented andtestingwereapprovedonroadsandthe consequences show the strength ofthe algorithm to the problemnatural in road location.Driverless vehicles are on the move to announcement by Google, which drove more than 500,000 miles on its original model vehicles and further key automakers specify the prospective enlargement in this region with the capability to convert the transportation infrastructure, enlarge access and convey settlement to variety of user. A few users address the anticipated unfinished convenience of self directed cars by 2020 with accessibility to the community by 2040.Certain trust that self-directed car make necessary to renovate the modern transportation that fundamentally removing coincidences andcleaning uptheroadenvironment.Thisstudyunderstandstheeffectsthat self- driving car orroboticvehicletravel demandsandride schemeislikelytohave,without thetypicalobstaclesthatallowsdetectionof vision basedhardwareandsoftware constructionof SDC (self-directed car) technologyandGold(GenericObstacleLaneDetection) toa knowledge-basedsystemtoexpectthepotentialandconsidertheshape,color, balancein organizedenvironmentwithcoloredlane patternswhichisimplemented by a particlefilter. Thealgorithm is implemented andtestingwereapprovedonroadsandthe consequences show the strength ofthe algorithm to the problemnatural in road location

    Multi-Lane Perception Using Feature Fusion Based on GraphSLAM

    Full text link
    An extensive, precise and robust recognition and modeling of the environment is a key factor for next generations of Advanced Driver Assistance Systems and development of autonomous vehicles. In this paper, a real-time approach for the perception of multiple lanes on highways is proposed. Lane markings detected by camera systems and observations of other traffic participants provide the input data for the algorithm. The information is accumulated and fused using GraphSLAM and the result constitutes the basis for a multilane clothoid model. To allow incorporation of additional information sources, input data is processed in a generic format. Evaluation of the method is performed by comparing real data, collected with an experimental vehicle on highways, to a ground truth map. The results show that ego and adjacent lanes are robustly detected with high quality up to a distance of 120 m. In comparison to serial lane detection, an increase in the detection range of the ego lane and a continuous perception of neighboring lanes is achieved. The method can potentially be utilized for the longitudinal and lateral control of self-driving vehicles

    Active skeleton for bacteria modeling

    Full text link
    The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modeling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness, orientation), an improved boundary accuracy in noisy images, and a natural bacteria-centered coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimizing an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modeling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at http://fluobactracker.inrialpes.fr.Comment: Published in Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualizationto appear i

    Determine characteristics requirement for the surrogate road edge objects for road departure mitigation testing

    Get PDF
    Road departure mitigation system (RDMS), a vehicle active safety feature, uses road edge objects to determine potential road departure. In the U.S., 45%, 16%, and 15% of car-mile (traffic flow * miles) roads have grass, metal guardrail, and concrete divider as road edge, respectively. It is difficult to test RDMS with real roadside objects. Lightweight and crashable surrogate roadside objects that have representative radar, LIDAR and camera characteristics of real objects have been developed for testing. This paper describes the identification of automotive radar, LIDAR, and visual characteristics of metal guardrail, concrete divider, and grass. These characteristics will be referenced for designing and fabricating the representative surrogate objects for RDMS testing. Colors and types of the roadside objects were identified from 24,735 randomly sampled locations in the US using Google street view images. The radar and LIDAR parameters were measured using 24GHz/77GHz radar and 350-2500nm IR spectrometer

    Laser-camera composite sensing for road detection and tracing

    Full text link
    An important feature in most urban roads and similar environments, such as in theme parks, campus sites, industrial estates, science parks, and the like, is the existence of pavements or curbs on either side de?ning the road boundaries. These curbs, which are mostly parallel to the road, can be harnessed to extract useful features of the road for implementing autonomous navigation or driver assistance systems. However, vision-alone methods for extraction of such curbs or road edge features with accurate depth information is a formidable task, as the curb is not conspicuous in the vision image and also requires the use of stereo images. Further, bad lighting, adverse weather conditions, nonlinear lens aberrations, or lens glare due to sun and other bright light sources can severely impair the road image quality and thus the operation of vision-alone methods. In this paper an alternative and novel approach involving the fusion of 2D laser range and monochrome vision image data is proposed to improve the robustness and reliability. Experimental results are presented to demonstrate the viability and effectiveness of the proposed methodology and its robustness to different road configurations and shadows
    corecore