10,938 research outputs found

    Methodologies to develop quantitative risk evaluation metrics

    Get PDF
    The goal of this work is to advance a new methodology to measure a severity cost for each host using the Common Vulnerability Scoring System (CVSS) based on base, temporal and environmental metrics by combining related sub-scores to produce a unique severity cost by modeling the problem's parameters in to a mathematical framework. We build our own CVSS Calculator using our equations to simplify the calculations of the vulnerabilities scores and to benchmark with other models. We design and develop a new approach to represent the cost assigned to each host by dividing the scores of the vulnerabilities to two main levels of privileges, user and root, and we classify these levels into operational levels to identify and calculate the severity cost of multi steps vulnerabilities. Finally we implement our framework on a simple network, using Nessus scanner as tool to discover known vulnerabilities and to implement the results to build and represent our cost centric attack graph

    A Syntactic Neural Model for General-Purpose Code Generation

    Full text link
    We consider the problem of parsing natural language descriptions into source code written in a general-purpose programming language like Python. Existing data-driven methods treat this problem as a language generation task without considering the underlying syntax of the target programming language. Informed by previous work in semantic parsing, in this paper we propose a novel neural architecture powered by a grammar model to explicitly capture the target syntax as prior knowledge. Experiments find this an effective way to scale up to generation of complex programs from natural language descriptions, achieving state-of-the-art results that well outperform previous code generation and semantic parsing approaches.Comment: To appear in ACL 201

    Attack graph approach to dynamic network vulnerability analysis and countermeasures

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyIt is widely accepted that modern computer networks (often presented as a heterogeneous collection of functioning organisations, applications, software, and hardware) contain vulnerabilities. This research proposes a new methodology to compute a dynamic severity cost for each state. Here a state refers to the behaviour of a system during an attack; an example of a state is where an attacker could influence the information on an application to alter the credentials. This is performed by utilising a modified variant of the Common Vulnerability Scoring System (CVSS), referred to as a Dynamic Vulnerability Scoring System (DVSS). This calculates scores of intrinsic, time-based, and ecological metrics by combining related sub-scores and modelling the problem’s parameters into a mathematical framework to develop a unique severity cost. The individual static nature of CVSS affects the scoring value, so the author has adapted a novel model to produce a DVSS metric that is more precise and efficient. In this approach, different parameters are used to compute the final scores determined from a number of parameters including network architecture, device setting, and the impact of vulnerability interactions. An attack graph (AG) is a security model representing the chains of vulnerability exploits in a network. A number of researchers have acknowledged the attack graph visual complexity and a lack of in-depth understanding. Current attack graph tools are constrained to only limited attributes or even rely on hand-generated input. The automatic formation of vulnerability information has been troublesome and vulnerability descriptions are frequently created by hand, or based on limited data. The network architectures and configurations along with the interactions between the individual vulnerabilities are considered in the method of computing the Cost using the DVSS and a dynamic cost-centric framework. A new methodology was built up to present an attack graph with a dynamic cost metric based on DVSS and also a novel methodology to estimate and represent the cost-centric approach for each host’ states was followed out. A framework is carried out on a test network, using the Nessus scanner to detect known vulnerabilities, implement these results and to build and represent the dynamic cost centric attack graph using ranking algorithms (in a standardised fashion to Mehta et al. 2006 and Kijsanayothin, 2010). However, instead of using vulnerabilities for each host, a CostRank Markov Model has developed utilising a novel cost-centric approach, thereby reducing the complexity in the attack graph and reducing the problem of visibility. An analogous parallel algorithm is developed to implement CostRank. The reason for developing a parallel CostRank Algorithm is to expedite the states ranking calculations for the increasing number of hosts and/or vulnerabilities. In the same way, the author intends to secure large scale networks that require fast and reliable computing to calculate the ranking of enormous graphs with thousands of vertices (states) and millions of arcs (representing an action to move from one state to another). In this proposed approach, the focus on a parallel CostRank computational architecture to appraise the enhancement in CostRank calculations and scalability of of the algorithm. In particular, a partitioning of input data, graph files and ranking vectors with a load balancing technique can enhance the performance and scalability of CostRank computations in parallel. A practical model of analogous CostRank parallel calculation is undertaken, resulting in a substantial decrease in calculations communication levels and in iteration time. The results are presented in an analytical approach in terms of scalability, efficiency, memory usage, speed up and input/output rates. Finally, a countermeasures model is developed to protect against network attacks by using a Dynamic Countermeasures Attack Tree (DCAT). The following scheme is used to build DCAT tree (i) using scalable parallel CostRank Algorithm to determine the critical asset, that system administrators need to protect; (ii) Track the Nessus scanner to determine the vulnerabilities associated with the asset using the dynamic cost centric framework and DVSS; (iii) Check out all published mitigations for all vulnerabilities. (iv) Assess how well the security solution mitigates those risks; (v) Assess DCAT algorithm in terms of effective security cost, probability and cost/benefit analysis to reduce the total impact of a specific vulnerability

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Detection of advanced persistent threat using machine-learning correlation analysis

    Get PDF
    As one of the most serious types of cyber attack, Advanced Persistent Threats (APT) have caused major concerns on a global scale. APT refers to a persistent, multi-stage attack with the intention to compromise the system and gain information from the targeted system, which has the potential to cause significant damage and substantial financial loss. The accurate detection and prediction of APT is an ongoing challenge. This work proposes a novel machine learning-based system entitled MLAPT, which can accurately and rapidly detect and predict APT attacks in a systematic way. The MLAPT runs through three main phases: (1) Threat detection, in which eight methods have been developed to detect different techniques used during the various APT steps. The implementation and validation of these methods with real traffic is a significant contribution to the current body of research; (2) Alert correlation, in which a correlation framework is designed to link the outputs of the detection methods, aims to identify alerts that could be related and belong to a single APT scenario; and (3) Attack prediction, in which a machine learning-based prediction module is proposed based on the correlation framework output, to be used by the network security team to determine the probability of the early alerts to develop a complete APT attack. MLAPT is experimentally evaluated and the presented sy
    • …
    corecore