2,819 research outputs found

    Machine Learning DDoS Detection for Consumer Internet of Things Devices

    Full text link
    An increasing number of Internet of Things (IoT) devices are connecting to the Internet, yet many of these devices are fundamentally insecure, exposing the Internet to a variety of attacks. Botnets such as Mirai have used insecure consumer IoT devices to conduct distributed denial of service (DDoS) attacks on critical Internet infrastructure. This motivates the development of new techniques to automatically detect consumer IoT attack traffic. In this paper, we demonstrate that using IoT-specific network behaviors (e.g. limited number of endpoints and regular time intervals between packets) to inform feature selection can result in high accuracy DDoS detection in IoT network traffic with a variety of machine learning algorithms, including neural networks. These results indicate that home gateway routers or other network middleboxes could automatically detect local IoT device sources of DDoS attacks using low-cost machine learning algorithms and traffic data that is flow-based and protocol-agnostic.Comment: 7 pages, 3 figures, 3 tables, appears in the 2018 Workshop on Deep Learning and Security (DLS '18

    HDL-IDS: A Hybrid Deep Learning Architecture for Intrusion Detection in the Internet of Vehicles

    Get PDF
    Internet of Vehicles (IoV) is an application of the Internet of Things (IoT) network that connects smart vehicles to the internet, and vehicles with each other. With the emergence of IoV technology, customers have placed great attention on smart vehicles. However, the rapid growth of IoV has also caused many security and privacy challenges that can lead to fatal accidents. To reduce smart vehicle accidents and detect malicious attacks in vehicular networks, several researchers have presented machine learning (ML)-based models for intrusion detection in IoT networks. However, a proficient and real-time faster algorithm is needed to detect malicious attacks in IoV. This article proposes a hybrid deep learning (DL) model for cyber attack detection in IoV. The proposed model is based on long short-term memory (LSTM) and gated recurrent unit (GRU). The performance of the proposed model is analyzed by using two datasets—a combined DDoS dataset that contains CIC DoS, CI-CIDS 2017, and CSE-CIC-IDS 2018, and a car-hacking dataset. The experimental results demonstrate that the proposed algorithm achieves higher attack detection accuracy of 99.5% and 99.9% for DDoS and car hacks, respectively. The other performance scores, precision, recall, and F1-score, also verify the superior performance of the proposed framework

    5G Networks and IoT Devices: Mitigating DDoS Attacks with Deep Learning Techniques

    Full text link
    The development and implementation of Internet of Things (IoT) devices have been accelerated dramatically in recent years. As a result, a super-network is required to handle the massive volumes of data collected and transmitted to these devices. Fifth generation (5G) technology is a new, comprehensive wireless technology that has the potential to be the primary enabling technology for the IoT. The rapid spread of IoT devices can encounter many security limits and concerns. As a result, new and serious security and privacy risks have emerged. Attackers use IoT devices to launch massive attacks; one of the most famous is the Distributed Denial of Service (DDoS) attack. Deep Learning techniques have proven their effectiveness in detecting and mitigating DDoS attacks. In this paper, we applied two Deep Learning algorithms Convolutional Neural Network (CNN) and Feed Forward Neural Network (FNN) in dataset was specifically designed for IoT devices within 5G networks. We constructed the 5G network infrastructure using OMNeT++ with the INET and Simu5G frameworks. The dataset encompasses both normal network traffic and DDoS attacks. The Deep Learning algorithms, CNN and FNN, showed impressive accuracy levels, both reaching 99%. These results underscore the potential of Deep Learning to enhance the security of IoT devices within 5G networks

    A Cognitive Framework to Secure Smart Cities

    Get PDF
    The advancement in technology has transformed Cyber Physical Systems and their interface with IoT into a more sophisticated and challenging paradigm. As a result, vulnerabilities and potential attacks manifest themselves considerably more than before, forcing researchers to rethink the conventional strategies that are currently in place to secure such physical systems. This manuscript studies the complex interweaving of sensor networks and physical systems and suggests a foundational innovation in the field. In sharp contrast with the existing IDS and IPS solutions, in this paper, a preventive and proactive method is employed to stay ahead of attacks by constantly monitoring network data patterns and identifying threats that are imminent. Here, by capitalizing on the significant progress in processing power (e.g. petascale computing) and storage capacity of computer systems, we propose a deep learning approach to predict and identify various security breaches that are about to occur. The learning process takes place by collecting a large number of files of different types and running tests on them to classify them as benign or malicious. The prediction model obtained as such can then be used to identify attacks. Our project articulates a new framework for interactions between physical systems and sensor networks, where malicious packets are repeatedly learned over time while the system continually operates with respect to imperfect security mechanisms

    LAMP: Prompt Layer 7 Attack Mitigation with Programmable Data Planes

    Full text link
    While there are various methods to detect application layer attacks or intrusion attempts on an individual end host, it is not efficient to provide all end hosts in the network with heavy-duty defense systems or software firewalls. In this work, we leverage a new concept of programmable data planes, to directly react on alerts raised by a victim and prevent further attacks on the whole network by blocking the attack at the network edge. We call our design LAMP, Layer 7 Attack Mitigation with Programmable data planes. We implemented LAMP using the P4 data plane programming language and evaluated its effectiveness and efficiency in the Behavioral Model (bmv2) environment
    • …
    corecore