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Abstract: Internet of Vehicles (IoV) is an application of the Internet of Things (IoT) network that
connects smart vehicles to the internet, and vehicles with each other. With the emergence of IoV
technology, customers have placed great attention on smart vehicles. However, the rapid growth of
IoV has also caused many security and privacy challenges that can lead to fatal accidents. To reduce
smart vehicle accidents and detect malicious attacks in vehicular networks, several researchers have
presented machine learning (ML)-based models for intrusion detection in IoT networks. However,
a proficient and real-time faster algorithm is needed to detect malicious attacks in IoV. This article
proposes a hybrid deep learning (DL) model for cyber attack detection in IoV. The proposed model
is based on long short-term memory (LSTM) and gated recurrent unit (GRU). The performance of
the proposed model is analyzed by using two datasets—a combined DDoS dataset that contains
CIC DoS, CI-CIDS 2017, and CSE-CIC-IDS 2018, and a car-hacking dataset. The experimental results
demonstrate that the proposed algorithm achieves higher attack detection accuracy of 99.5% and
99.9% for DDoS and car hacks, respectively. The other performance scores, precision, recall, and
F1-score, also verify the superior performance of the proposed framework.

Keywords: deep learning; gated recurrent units; Internet of Things; Internet of Vehicles; long short-
term memory; machine learning

1. Introduction

Internet of Things (IoT) is an advanced technology that connects smart devices to
the internet, such as the Internet of Vehicles (IoV), wireless cameras, and other electronic
devices. Due to the rapid increase of connected vehicles, several security and privacy
challenges have been introduced [1–3]. A basic framework for communications between
vehicular networks is IoV [4]. It establishes a dependable network transmission between
vehicles [5]. The IoV network consists of two sub-networks—intra-vehicle network and
inter-vehicular network. The intra-vehicle network involves internal electronic devices
and sensors of a vehicle, which are connected to a centralized controller for message
transmission and performing a specific task [6]. While an inter-vehicular network connects
a vehicle to external devices using vehicle-to-everything (V2X) technology. V2X allows

Sensors 2022, 22, 1340. https://doi.org/10.3390/s22041340 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6140-1201
https://orcid.org/0000-0001-6289-8248
https://orcid.org/0000-0002-5852-1955
https://orcid.org/0000-0002-3392-9970
https://orcid.org/0000-0001-8621-2773
https://orcid.org/0000-0003-0809-3523
https://doi.org/10.3390/s22041340
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041340?type=check_update&version=1


Sensors 2022, 22, 1340 2 of 20

communication between vehicles and other communicative devices, such as signal antennas
and other roadside infrastructure [7,8].

The security risks increase with the rapid growth in the connectivity of smart vehicles.
An attack on the IoV network can affect stability, reliability, and cause accidents in vehicles.
In June 2021, the World Health Organization (WHO) stated that every year 1.3 million
deaths occur due to car accidents [9]. In a real-life example, two hackers hacked a vehicle,
took control of steering and brakes, and performed dangerous actions at high speed [10].

During a cyber attack on a vehicle network, the attacker takes control of a vehicle,
where he/she can perform dangerous stunts. A hacker has the ability to disable the brakes
or jerk the steering wheel at a high speed, which may potentially lead to an accident. The
attacker can also carry out a distributed denial of service (DDoS) attack, which engages
the car controller area network (CAN) bus and prevents IoV-based vehicles from accessing
the brakes at crucial times [11,12]. DDoS attacks on inter-vehicle networks keep channels
busy, such as not letting traffic signal lights turn red and keeping them green in dangerous
places that may lead to accidents [13].

An intrusion detection system (IDS) is needed to monitor network traffic and detect
malicious attacks. The performance of IDS depends on the accuracy of the detection algo-
rithm. Improving the accuracy of IDS will reduce the false alarm rate. Existing IDSs have
difficulty in improving performance and detecting unknown attacks. Machine learning
(ML) techniques provide automated detection systems with impressive performance. More-
over, ML techniques have general capabilities to detect unknown attacks. Deep learning
(DL) is a branch of ML, whose performance is remarkable. On the basis of performance,
DL methods have become a research “hotspot” [14–16].

The purpose of IDS is to identify different types of malicious network traffic and
computer activities that a regular firewall might miss [17]. From a trained set, ML can
learn essential details. Moreover, ML algorithms handle nonlinear data and are easy to
train [18–20]. A generic cyber attack scenario on smart vehicles is presented in Figure 1.
Several researchers have suggested ML techniques for reducing issues related to smart
vehicles. A proficient and fast algorithm is needed to detect malicious attacks in IoV. DL
algorithms provide more efficient performances than traditional ML algorithms [21–23].
For IDS, some commonly used DL algorithms are convolutional neural network (CNN),
recurrent neural network (RNN), LSTM, and GRU. The CCN is more complex than other
DL algorithms, because it requires data-like images in matrix form; the data must be
normalized and converted into the form of an image matrix [24–29]. The LSTM and GRU
algorithms are effective at detecting malicious assaults over other ML and DL algorithms.
Moreover, in IoV, some vehicles are connected for long time periods in which conventional
ML models fail to convey long-term results. LSTM and GRU algorithms provide good
accuracy in detecting malicious attacks [30].

Figure 1. A cyber attack scenario in smart vehicle.

For better performance, every DL algorithm requires more than one layer. The LSTM
performance on multiple layers is much better than GRU, but the training and response
time is high, while GRU training and response time are better than LSTM, but performance
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is low [31]. Improving GRU performance and reducing the response time of LSTM in
multi-layers, this paper presents an HDL-IDS scheme that combines LSTM and GRU
algorithms. This hybrid combination can provide better performance in terms of accuracy
and response time.

Multiple real-time datasets available are generated by different researchers for the
detection of malicious attacks. Some old datasets have data for old attack detections, and
some new datasets have data for new attack detections. In this paper, we used two datasets,
a combined DDoS of CIC DoS, CI-CIDS 2017, and CSE-CIC-IDS 2018 for detection of DDoS
attacks in inter-vehicular networks, and a car-hacking dataset for the detection of DDoS,
fuzzing, and spoofing in an intra-vehicular network [32,33].

Contribution

• This paper suggests pre-processing techniques that include cleaning, shuffling, feature
filtering, and normalization. In pre-processing, the shuffling technique applies to
the dataset that shuffles the dataset in random fashion for training and testing of the
model and improves the performance of the model.

• A novel hybrid technique of LSTM-GRU is presented for intrusion detection in IoV.
• The proposed approach reduces the training and response time and significantly

improves the attack detection accuracy.

The remaining paper is organized as follows. Section 2 presents some of the latest re-
search related to the intrusion detection in IoV. Section 3 comprises mathematical modeling
and overall flow of the proposed architecture. Section 4 discusses the experimental method-
ology. Section 5 presents a brief discussion on experimental findings of the proposed model.
Finally, a brief conclusion is presented in Section 6.

2. Related Work

This section presents some of the latest research contributions related to intrusion
detection in IoV. Ashraf et al. [34] presented a DL-based IDS for intelligent transporta-
tion systems (ITS) that learns the behaviour of regular network traffic in an intra-vehicle
network, V2V communications, and V2I networks. The proposed IDS is based on the
LSTM autoencoder, which recognize anomalous events in IoV from the main gateway.
The evaluation of the model was done with the car-hacking and UNSWNB15 datasets
for intra-vehicle and inter-vehicle communications. Injadat et al. [35] proposed a novel
multi-stage optimized ML-based model for detection of cyber attacks. The main purpose of
this model was to reduce the computational power and provide better performance of the
system. Researchers evaluated the performance of the proposed scheme using CICIDS2017
and UNSW-NB15 datasets.

In another study, Zaidi et al. [36] applied statistical methods to examine the flow
of IoV traffic to find rogue and more malicious nodes. In this technique, the flow of
network traffic was first collected and then intrusion detection was assessed. The proposed
IDS can decide to approve or disapprove the coming data on the basis of traffic flow
insight analysis. The performance of this method is better for detecting rogue and more
malicious nodes. Whenever multiple malicious events occur, the accuracy of this method
becomes low. Anbalagan et al. [37] proposed a memetic-based RSU (M-RSU) model for fast
communications in a wide area. Researchers also proposed a distributed ML (DML) model
for the detection of attacks in the IoV network. Nie et al. [38] proposed a traditional CNN
model to extract the features from RSU and detect the attacks in IoV. Olufowobi et al. [39]
developed an effective algorithm to estimate the real-time arguments of response time
analysis (RTA) model using a black box technique. They presented the SAIDuCANT
IDS paradigm, which specifies desired the behavior of the CAN bus, and then identifies
violations as indicators of a negotiated network. Researchers discussed two new measures,
time to detection (TD) and false positives before attack (FPBA), which assess an IDS
performance, for which SAIDuCANT outperforms existing detection algorithms in terms
of accuracy and consistency.
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Zhang et al. [40] generated their own dataset from a real-time vehicular network
and proposed an ANN model for IDS in intra-vehicle networks. The proposed algorithm
improved the accuracy of IDS up to 98% by using gradient descent with momentum (GDM),
and GDM with adaptive gain. Kang et al. [41] developed a deep learning paradigm for IDS
in intra-vehicle networks. The main purpose of the paradigm was to improve the accuracy
of IDS. Researchers worked on binary classifications that were benign and assault data. For
the classification, they calculated the probability of each packet to classify it is an anomaly
or normal packet. Researchers utilized their own generated datasets for training and testing
of the model. Comparisons of the existing study with state-of-the-art models are shown in
Tables 1 and 2. These tables show the existing models with various features in the related
work. The proposed study includes missing features of previous models.

Table 1. A comparison of existing studies related to intrusion detection in IoV.

Authors Inter-Vehicle Detection Intra-Vehicle Detection Multiclass Detection Features Filtering Response Time

Ashraf et al. [34] × × High

Injadat et al. [35] × × Low

Zaidi et al. [36] × × × High

Anbalagan et al. [37] × × × Low

Nie et al. [38] × × High

Olufowobi et al. [39] × × × Low

Zhang et al. [40] × × Low

Kang et al. [41] × × Low

Proposed Study Low

Table 2. Comparison of the HDL-IDS with the state-of-the-art models.

Authors Dataset Attack Detection Mechanism

Ashraf et al. [34] Car Hack and UNSWNB15 LSTM

Injadat et al. [35] CICIDS 2017 and UNSW-NB 2015 NIDS

Anbalagan et al. [37] Network traffic ANN base SD-IoV

Nie et al. [38] Network traffic CNN

Olufowobi et al. [39] CAN SAIDuCANT

Zhang et al. [40] NSL-KDD Deep Belief Network (DBN)

Kang et al. [41] CAN DBN

Proposed Study Combined DDoS and Car Hack2020 HDL-IDS

3. The Proposed Hybrid Deep Learning Model for Intrusion Detection in IoV

Intrusion in IoV is very dangerous to human life. An attack on inter-vehicular net-
works can disturb the communication between smart vehicles. The vehicle cannot get any
information about road situations. Moreover, an intra-vehicular network is more sensitive
than an inter-vehicular network because, in a vehicle, the main target of the attacker is the
CAN bus. A black hacker can attack the CAN bus of a vehicle that takes control of the
internal main controller of the vehicle, which may cause an accident. To protect human
life, it is essential to deploy the security firewalls against these types of cyber attacks.
Several researchers suggested ML techniques to reduce issues related to smart vehicles. For
multiple layer models, many researchers used LSTM or GRU or combined it with other DL
algorithms for the improvement of performance on the detection rate of malicious attacks
in IoV, but the response time of the system becomes high. LSTM and GRU work on time
series data and always learn from previous time steps.
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The vanishing gradient problem of RNN is addressed by the LSTM and GRU. The
performance of multiple layer LSTM for intrusion detection is better, However, the response
time is high. Moreover, the response time of GRU is less, but the performance is not as
good as LSTM [31]. In this paper, we propose a hybrid DL model that combines LSTM
and GRU. The block diagram of the proposed architecture is presented in Figure 2. This
framework contains three layers—LSTM, DENSE, and GRU. The proposed model reduces
the training and response times of multiple layers on LSTM and gives better performance
in detecting malicious attacks in IoV.

Figure 2. Block diagram of the proposed model for intrusion detection in IoV.

3.1. LSTM

LSTM is the first hidden layer of the proposed model. The input to the first hidden
layer is given as (none, 48, 1) for the combined DDoS dataset, and (none, 10, 1) for the car-
hacking dataset. Here, “none” is the dynamic size number of instances, “48” is the number
of features, and “1” is the third dimension value. The output shape of this layer is (none, 48,
24) for combined DDoS and (none, 10, 20) for the car-hacking dataset, which is the input to
the next layer. LSTM has a series of gates for the flow control of information, for example,
how data come in, saves it, and leaves. Moreover, there are two more states—cell state
and hidden state. Typically, LSTM has five activation functions, three sigmoid functions
(one in each gate), and two Tanh functions (one with the input gate and the second with
output gate). Mainly, there are three gates in LSTM—forget, input, and output gates, as
shown in Figure 3. The forget, input, and output gates are mathematically described in
Equations (1)–(3), respectively.

ft = σ
(

wh f ht−1 + wx f xt + b f

)
(1)
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it = σ(whiht−1 + wxixt + bi) (2)

ot = σ(whtht−1 + wxtxt + bt) (3)

The new hidden state value is calculated by using Equation (4) and the cell state value
by using Equations (5) and (6). The input, output, and forget gates are represented by ‘i’,
‘o’, and ‘f ’, respectively. ‘w’ represents weight, ‘h’ represents hidden state, ‘x’ represents the
input data, ‘b’ represents bias, and ‘C’ represents cell state.

C̃t = tanh
(

xtwxg + wght−1 + bg
)

(4)

Ct = σ
(

ft ∗ Ct−1 + itxt ∗ C̃t + bc

)
(5)

ht = tanh(Ct + bh) ∗ ot (6)
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Figure 3. Basic architecture of LSTM.

3.2. DENSE

DENSE is the second layer in the proposed model to join LSTM with GRU, and gives
quick responses. The DENSE layer gets the values from the previously hidden layer in
the (none, 48, 24) shape for the combined DDoS dataset and the (none, 10, 20) shape for
the car-hacking dataset. This layer is connected to the previous layer. The output shape of
this layer is (none, 48, 12) and (none, 10, 10) for the above-mentioned datasets, respectively,
which is the input to the next layer. We used the rectified linear activation unit (ReLU) in
this layer. The ReLU activation function worked on positive values. In this experiment,
the positive values are between 0 and 1. The speed of the ReLU function is faster than
other activation functions and it also reduces the vanishing gradient problem. The ReLU is
described in Equation (7).

Rx = max(0, x) (7)

3.3. GRU

GRU is the third layer in the proposed model that takes values from the previous
DENSE layer and produces the final output. The GRU layer gets the values from the
previous layer in the (none, 48, 12) shape for the combined DDoS dataset and the (none,
10, 10) shape for the car-hacking dataset. This layer produces the output probability. GRU
has two gates—reset gate and update gate, and one hidden state. There are two sigmoid
activation functions in GRU (one in each gate) and one Tanh function for the output shown
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in Figure 4. For multi-class detection, the softmax activation function is used. The reset and
updated gates are described in Equations (8) and (9), respectively.

rt = σ((wxrxt + whrht−1 + br)) (8)

ut = σ((wxuxt + wurht−1 + bu)) (9)

The new hidden state value has calculated using Equations (10) and (11). The reset
and update gates are represented by ‘r’ and ‘u’, respectively.

h̃t = tanh(whxxt + whh(rtht−1) + bu)
)

(10)

ht = (1 − ut)ht−1 + ut h̃t (11)
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Figure 4. Basic architecture of GRU.

4. Experimental Methodology

In this section, a detailed experimental methodology is presented. This section contains
dataset description, preprocessing, and feature selection process.

4.1. Datasets

There are multiple real-time network datasets available for intrusion detection, such
as DARPA, NSL-KDD, CIC DoS dataset 2016, CICIDS 2017, CSE-CIC-IDS 2018 AWS, and
CIC-DDoS 2019. For this experiment, we used two datasets—a combined DDoS dataset
for the inter-vehicular network and a car-hacking dataset for the intra-vehicle network, as
shown in Table 3.

Table 3. The utilized datasets.

Dataset Dataset-Files Classes Records

Combined DDoS DDoS balanced
DDoS 6,472,647

Benign 6,321,980

Car hack 2020

DDoS
Injected 587,521

Normal 3,047,062

Fuzzy
Injected 491,847

Injected 3,259,177

Spoof
Injected 1,252,149

Injected 7,731,054

Normal
Injected 0

Injected 988,872
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4.1.1. Combined DDoS Dataset

The combined DDoS dataset was created from the combination of real-time network
DDoS datasets—CIC DoS 2016, CICIDS 2017, and CSE-CIC-IDS 2018. This dataset consists
of two classes of data, DDoS and Benign. The number of DDoS records in the dataset
was 6,472,647 and the number of Benign records was 6,321,980. CIC DoS 2016, CICIDS
2017, and CSE-CIC-IDS 2018 datasets included inter-vehicle network flow data according
to DDoS attacks [5,32]. CIC DoS 2016 dataset included slowbody2, ddosim, goldeneye,
hulk, slowloris, rudy, and slowread attacks. CICIDS 2017 dataset included DDoS-LOIC and
port scan attacks. The CSE-CIC-IDS 2018 dataset included SlowHTTPTest, hulk, slowloris,
LOIC-types of DDoS attacks. A collection of these datasets, with identical features, included
the different types of DDoS attacks in a single combined dataset [32]. The combined dataset
includes different types of DDoS attacks that are found in inter-vehicular networks. The
inter-vehicular network can suffer from port scan, DDOSIM, goldeneye, hulk, slowloris,
rudy, slowread, SlowHTTPTest, or LOIC-types of DDoS attack, which are included in the
combined dataset [42,43].

4.1.2. Car-Hacking Dataset

The car-hacking dataset was generated for the detection of cyber attacks in the internal
network of the vehicle. This dataset mainly works on the CAN bus, which can target the
attacker [33]. There are four different files—DDoS, Fuzzy, gear, and RPM, in which gear
and RPM are spoof attack files. In each file of the dataset, the classes are represented with R
and T, which represent benign and malicious values, respectively. In this experiment, first,
we renamed each file label with the name of the class, such as DDoS, Fuzzy, Spoof, and
Benign, and then combined all of these files into a single data frame.

4.2. Cleaning

Each dataset has multiple records. A dataset must be checked before training the
model for empty and undefined records. For the cleaning, we used python libraries (Pandas
and NumPy) and functions to check the dataset for missing and infinite values, which
returned Boolean values, true or false. True meant there were some missing or infinite
values and false meant the dataset was clean. In our experiments, two datasets were
utilized that had some undefined and empty records. To clean these datasets, all undefined
records were converted into empty records. After conversion of undefined values to empty,
all empty records were removed from the datasets.

4.3. Shuffling

This technique is used to shuffle dataset tuples. In our experiments, the combined
balance DDoS dataset was used for the inter-vehicular network that had two classes—
benign and DDoS. The second was the car-hacking dataset, which was used for intra-
vehicle networks. Data in the combined dataset were arranged in a sequential form, such as
complete data of one class then complete data of the second class. The training and testing
of the model required both types of data. To improve the performance of the model, and
for better testing, it required shuffled data. The shuffling method was used to shuffle all of
the data in a random fashion.

4.4. Feature Filtering

Every dataset has a number of features. If a dataset has multiple features and also has
some unimportant features that cannot affect the output label, then we must remove it from
the dataset, because, it produces overfitting and underfitting, which will affect the time
complexity and performance of the model. Feature selection is a technique used to remove
unimportant features from the dataset and leave only important features. The main goal of
feature selection was to prevent overfitting, underfitting, to improve the performance, and
reduce the training time and response time of the model.
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When we trained the proposed model with all 84 features of the combined dataset
and all 12 features of the car-hacking dataset, the performance of the model declined and
gave 49.71% and 82.35% accuracies, respectively. To improve the performance of the model,
the features of the dataset have to be reduced and the unimportant features have to be
eliminated. There are mainly three methods for feature selection—wrapper, filter, and
intrinsic methods. In this work, the filter method was used. The extra tree classifier (ETC)
method was used in the feature filtering. This method ranks all features according to
their entropy, as shown in Figures 5 and 6. All features with values greater than 0.0017
were selected. After ranking removed the unimportant and very low-rank features that
could not affect the output class, the remaining important features were 48; one was the
label of the combined dataset and 10 important features, and one was the label of the
car-hacking dataset.

Figure 5. Combined dataset ranked features.

Figure 6. Car-hacking dataset ranked features.
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4.5. Balancing Strategies

Each dataset contains multiple records. Before training and testing the model, make
sure that each class has the same number of instances or slight variations. There are
basically two ways to equalize the number of instances in each class—undersampling and
oversampling. Undersampling can potentially remove important instances, and random
oversampling can replicate the same instances that can cause overfitting.

In this experiment, the combined DDoS dataset was balanced, but the car-hacking
dataset was unbalanced. There were four classes of data in four different files. Each file
contained normal and injected data. We selected the injected instances from each file, and for
normal instances, used a normal file. Separate numeric labels for each class was assigned
and then all were into one data frame. To balance the dataset, the synthetic minority
oversampling technique (SMOTE) was used to create artificial instances. SMOTE uses the
K-nearest neighbor (KNN) method to select a very near-random instance. SMOTE generates
new instances inside the same class range. For creating training, validation, and testing
sets, a stratified random sampling (SRS) technique was used. The SRS technique takes an
equal number of instances from each class and creates train, test, and validation sets.

4.6. Normalization

Normalization is a technique to scale the numeric values between the common scale
ranges and remove problems from the dataset, such as different values in different features;
for example, one feature values between 0 and 1 and the other feature values 100 and
1000, so it can affect the training of the model. In our experiments, the dataset has very
large values in some features and very small values, such as negative values. To address
this problem, firstly, the categorical features were converted into numerical values. Each
feature had multiple categories, for which one-hot-encoding required larger memory and
was time-consuming [44]. In this experiment, we used the label encoder technique for the
conversion of categorical attributes to numerical. After the conversion, we used the min–
max normalization technique to normalized values between 0 and 1 by using Equation (12).

Xnorm =
x − xmin

xmax − xmin
(12)

5. Simulations and Results

In this section we discuss the results obtained from the experiments. We conducted
two experiments on the proposed model. The first experiment was conducted for the
inter-vehicular networks, which was for binary class detection DDoS and benign. The
DDoS attack is famous for bringing the whole network down. This is more dangerous than
other attacks because DDoS spreads rapidly in the network and causes sufficiently higher
damage. DDoS attack on the network overwhelm the channel. In this process, network
traffic is flooded on a targeted server, which results in the network not working properly or
malfunctioning. In such circumstances, it becomes difficult for a vehicle to send/get critical
information [45,46].

The second experiment was performed for the intra-vehicular network multi-class
attack detection on a CAN bus. The evaluation of the model for the inter-vehicular network
was performed by using a combined dataset. For intra-vehicle attack detection, multi-class
classification was performed by using the car hack2020 dataset. The proposed scheme was
tested on Adam, Nadam, and Adamax optimizers with batch size 32, and probabilistic loss
functions. The binary cross-entropy function was used for the combined DDoS dataset and
a sparse categorical cross-entropy function for car hack2020 dataset.

5.1. Experimental Setup

The proposed scheme was implemented by using an Intel Core i5 8th generation
laptop. All experiments were performed in a Python 3.0 simulation environment to analyze
the performance of the proposed model.
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5.2. Evaluation Measure

Evaluation is a technique that measures the performance of the model. For the evalua-
tion, several researchers use precision, recall, F1-measure, and accuracy. The evaluation
of the proposed model was done with 20% data of a combined DDoS dataset for an inter-
vehicular network and 20% data of a car hack2020 dataset for the intra-vehicular network.
To evaluate the performance of the proposed scheme, a number of evaluation metrics were
utilized, including accuracy, precision, recall, and F1-score. The evaluation metrics are
calculated with true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). All of these performance scores can be measure by using Equations (13)–(16).

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1-measure =
2 ∗ ( Pression ∗ Recall )

Pression + Recall
(16)

5.3. Inter-Vehicular Network

The inter-vehicular network enables vehicles to communicate with each other and
roadside infrastructure. The attacker can target the network and stop the communication
of the inter-vehicular network. In an inter-vehicle network, the attacker can easily launch
a DDoS attack due to mobility. All services of the network will be stopped by the DDoS
attack [47]. We conducted the experiment on the proposed model to detect cyber attacks in
the inter-vehicular network by using a combined DDoS dataset. The proposed model was
the combination of LSTM and GRU with the DENSE ReLU layer. The training process was
conducted for six epochs. In this experiment, we used the binary cross-entropy function for
loss. The proposed scheme was tested on Adam, Nadam, and Adamax optimizers. Adam
gave 99.44% precision, 99.60% recall, 99.52% F1-measure, and 99.51% accuracy. Nadam
gave 99.91% precision, 99.83% recall, 99.87% F1-measure, and 99.85% accuracy. Adamax
gave 98.92% precision, 98.95% recall, 98.93% F1-measure, and 98.93%. The comparison
with LSTM and GRU is shown in Figures 7–9. The training accuracy and loss on the Adam
optimizer is shown in Figure 10, Nadam optimizer is shown in Figure 11, and Admax is
shown in Figure 12.

Figure 7. Evaluation on Adam with the combined DDoS dataset.
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The model performance was tested for the response time on the combined DDoS
dataset. Testing of the model was conducted with 20% of pre-processed data of the dataset.
The time testing was is also conducted for three models—LSTM, GRU, and the proposed
model. The proposed model was tested with 2,549,370 instances of the combined DDoS
dataset, which were 79,668 batches of size 32. The total testing time was 692 s, as shown
in Figure 13, and each batch took 8.7 ms. There were 32 instances in each batch and the
response time of each instance was 0.27 ms. The total testing times of LSTM and GRU for
the same instances were 1307.33 and 1116 s, respectively. The testing response time shows
that the proposed model is faster than LSTM and GRU.

Figure 8. Evaluation on Nadam with the combined DDoS dataset.

Figure 9. Evaluation on Adamax with the combined DDoS dataset.
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(a) (b)

Figure 10. Adam training on the combined DDoS dataset. (a) Adam training accuracy on the
combined dataset, (b) Adam training loss on the combined dataset.

(a) (b)

Figure 11. Nadam Training on Combined DDoS dataset. (a) Nadam Training Accuracy on Combined
dataset, (b) Nadam Training Loss on Combined dataset.

(a) (b)

Figure 12. Adamax training on the combined DDoS dataset. (a) Adamax training accuracy on the
combined dataset, (b) Adamax training loss on the combined dataset.
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Figure 13. Testing Time on the combined DDoS dataset.

5.4. Intra-Vehicular Network

In the intra-vehicle network, the internal smart devices of a vehicle communicate with
each other and control the communication of the vehicle in the inter-network. The hacker
can target the internal network of the vehicle, called CAN bus. After gaining access to the
intra-vehicular network, the assailant can manipulate and erase information, disrupt the
vehicle functionalities, and can take control of the vehicle [39]. An internal attack on the car
can cause accidents. In a fuzzing attack, the attacker shakes the steering wheel, changes
gears, turns the signal lights on/off randomly, and uses the brakes in the mobility of the
vehicle [33,48]. C. Miller and C. Valasek made two attacks on a CAN bus. The operation
took place on an empty road in the country. In the first attack, they activated the auto
parking property when the car jerked the steering wheel side to side of the road. In the
second attack, they disabled the brakes while the vehicle was in motion. Both attacks did
not cause any real damage, but if these stunts were performed in a crowded place it could
lead to an accident [12].

To control this type of accident, we conducted he experiment on the proposed model
to detect multi-class malicious attacks in the internal network of the vehicle by using a
car-hacking dataset. The proposed scheme was tested on Adam, Nadam, and Adamax
optimizers. For multi-class, we used the softmax activation function in the last layer. The
training process was conducted for six epochs. In this experiment, we used the sparse
categorical crossentropy function for loss. The evaluation of the model for the intra-vehicle
network was conducted with a car-hacking dataset. The precision, recall, F1-measure, and
accuracy on Adam was 0.9999, 0.9999, 0.9999, and 0.9999, respectively. The precision, recall,
F1-measure, and accuracy on the Nadam optimizer was 0.9999, 0.9998, 0.9998, and 0.9999,
respectively. The precision, recall, F1-measure, and accuracy on the Adamax optimizer
was 0.9993, 0.9998, 0.9995, and 0.9996, respectively. The comparisons with LSTM and
GRU are shown in Figures 14–16. The proposed model training accuracy and loss for
Adam, Nadeem, and Admax optimizers are shown in Figures 17–19, respectively. Training
accuracy was over 99% and loss was below 0.02 for each optimizer.
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Figure 14. Evaluation on Adam with the car-hacking dataset.

Figure 15. Evaluation on Nadam with the car-hacking dataset.

Figure 16. Evaluation on Adamax with the car-hacking dataset.
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(a) (b)

Figure 17. Adam training on the car-hacking dataset. (a) Adam training accuracy on car-hacking.
Dataset; (b) Adam training loss on car-hacking. Dataset.

(a) (b)

Figure 18. Nadam Training on the car-hacking dataset. (a) Nadam training accuracy on car-hacking.
dataset; (b) Nadam training loss on car-hacking. dataset.

(a) (b)

Figure 19. Adamax training on car-hacking dataset. (a) Adamax training accuracy on car-hacking.
dataset; (b) Adamax training loss on car-hacking. dataset.
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Figure 20. Testing time score on the car-hacking dataset.

The model performance was tested for the response time on the car-hacking dataset.
Testing of the model was conducted with 20% of the pre-processed data of the dataset. The
time testing process was also conducted for three models, such as LSTM GRU and the
proposed model. The proposed model was tested with 1,001,720 instances of the dataset,
which are 31,304 batches of size 32. The total testing time was 51 s, as shown in Figure 20,
and each batch took 1.62 ms. There were 32 instances in each batch and the response time of
each instance was 0.05 ms. The total testing time of LSTM and GRU for the same instances
were 72 and 67 s, respectively. The testing response time shows that the proposed model is
faster than LSTM and GRU.

5.5. Discussion

The experimental results show that the proposed model gives better performance in
less response time as compared to other models. The proposed scheme can detect both
binary and multi-class cyber attacks in less response time. We observed the proposed
model with different optimizers for both datasets. The results show different values for
each optimizer. The Adam and Nadam optimizers give better results than the Adamax
optimizer. In this experiment, we obtained the highest results with Nadam on the proposed
model and LSTM for both binary and multi-classification. In this work, we used k-fold cross-
validations to test the performance of the proposed system. Moreover, 3-fold, 5-fold, and
7-fold for both DDoS and car-hacking datasets were used. The performance of the proposed
system remained the same and the results are tabulated in Tables 4 and 5. Comparison
of the proposed study with other ML algorithms are highlighted in Tables 4 and 5. The
performance of LSTM is equivalent to the proposed model, but the response time is high,
while the GRU model gives less performance than LSTM and the proposed model. The
combination of LSTM and GRU with the ReLU DENSE layer gave a quick response.
Deep layers of LSTM and GRU gave better results, but were time consuming. From the
experimental results, the propose model gave above 99% results for binary and multi-
class classification.

Table 4. Comparison of the HDL-IDS with other ML algorithms on the combined DDoS dataset.

Algorithms Precision Recall F1-Score Accuracy

Naive Bayes 0.8928 0.8924 0.8925 0.8925

Decision tree 0.9907 0.9750 0.9827 0.9814

SVM 0.9493 0.9125 0.9305 0.9302

LSTM 0.9925 0.9949 0.9937 0.9936

GRU 0.9819 0.9874 0.9846 0.9844

Proposed study 0.9951 0.9960 0.9952 0.9951
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Table 5. Comparison of the HDL-IDS with other ML algorithms on the car-hacking 2020 dataset.

Algorithms Precision Recall F1-Score Accuracy

Naive Bayes 0.7903 0.7681 0.7790 0.7192

Decision tree 0.9503 0.8099 0.8745 0.9181

SVM 0.9379 0.8966 0.9167 0.9254

LSTM 0.9994 0.9997 0.9995 0.9997

GRU 0.9940 0.9963 0.9951 0.9952

Proposed Study 0.9997 0.9998 0.9997 0.9998

6. Conclusions

The extensive growth of smart vehicular networks has opened up several doors for
cybercriminals. Attacks on intra-vehicle networks can cause deaths and severe accidents.
This research proposes a hybrid DL-based model for intrusion detection in IoV. The pro-
posed scheme contains a hybrid combination of LSTM and GRU that reduces the training
and response time. The performance of the proposed approach was evaluated by con-
ducting extensive experiments on a combined dataset of CIC DoS 2016, CICIDS 2017, and
CSE-CIC-IDS 2018, and car-hacking datasets. The experimental results demonstrate that
the proposed model achieves 99.5% accuracy for the combined DDoS dataset and 99.9% for
the car-hacking dataset, respectively.
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