7,601 research outputs found

    A deep learning framework for malware classification

    Get PDF
    Copyright © 2020, IGI Global. In this article, the authors propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses serious security threats to financial institutions, businesses, and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples. Nowadays, machine learning approaches are becoming popular for malware classification. However, most of these approaches are based on shallow learning algorithms (e.g. SVM). Recently, convolutional neural networks (CNNs), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Inspired by this, the authors propose a CNN-based architecture to classify malware samples. They convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, namely Malimg and Microsoft, demonstrate that their method outperforms competing state-of-the-art algorithms

    Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection

    Full text link
    In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology and framework for efficient and effective real-time malware detection, leveraging the best of conventional machine learning (ML) and deep learning (DL) algorithms. In PROPEDEUTICA, all software processes in the system start execution subjected to a conventional ML detector for fast classification. If a piece of software receives a borderline classification, it is subjected to further analysis via more performance expensive and more accurate DL methods, via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays to the execution of software subjected to deep learning analysis as a way to "buy time" for DL analysis and to rate-limit the impact of possible malware in the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and 877 commonly used benign software samples from various categories for the Windows OS. Our results show that the false positive rate for conventional ML methods can reach 20%, and for modern DL methods it is usually below 6%. However, the classification time for DL can be 100X longer than conventional ML methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the percentage of software subjected to DL analysis was approximately 40% on average. Further, the application of delays in software subjected to ML reduced the detection time by approximately 10%. Finally, we found and discussed a discrepancy between the detection accuracy offline (analysis after all traces are collected) and on-the-fly (analysis in tandem with trace collection). Our insights show that conventional ML and modern DL-based malware detectors in isolation cannot meet the needs of efficient and effective malware detection: high accuracy, low false positive rate, and short classification time.Comment: 17 pages, 7 figure

    Resilient and Scalable Android Malware Fingerprinting and Detection

    Get PDF
    Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual analysis of such a large volume of malware is daunting and time-consuming. The diversity of targeted systems in terms of architecture and platforms compounds the challenges of Android malware detection and malware in general. This highlights the need to design and implement new scalable and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a malware fingerprinting framework to cover accurate Android malware detection and family attribution. In this context, we emphasize the following: (i) the scalability over a large malware corpus; (ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms and architectures. In the context of bulk and offline detection on the laboratory/vendor level: First, we propose an approximate fingerprinting technique for Android packaging that captures the underlying static structure of the Android apps. We also propose a malware clustering framework on top of this fingerprinting technique to perform unsupervised malware detection and grouping by building and partitioning a similarity network of malicious apps. Second, we propose an approximate fingerprinting technique for Android malware's behavior reports generated using dynamic analyses leveraging natural language processing techniques. Based on this fingerprinting technique, we propose a portable malware detection and family threat attribution framework employing supervised machine learning techniques. Third, we design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis techniques to generate relevant, actionable, and granular intelligence that can be used to identify the threat effects induced by malicious Internet activity associated to Android malicious apps. In the context of the single app and online detection on the mobile device level, we further propose the following: Fourth, we design a portable and effective Android malware detection system that is suitable for deployment on mobile and resource constrained devices, using machine learning classification on raw method call sequences. Fifth, we elaborate a framework for Android malware detection that is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. We also evaluate the portability of the proposed techniques and methods beyond Android platform malware, as follows: Sixth, we leverage the previously elaborated techniques to build a framework for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction with advanced deep learning techniques

    Multitask Learning for Network Traffic Classification

    Full text link
    Traffic classification has various applications in today's Internet, from resource allocation, billing and QoS purposes in ISPs to firewall and malware detection in clients. Classical machine learning algorithms and deep learning models have been widely used to solve the traffic classification task. However, training such models requires a large amount of labeled data. Labeling data is often the most difficult and time-consuming process in building a classifier. To solve this challenge, we reformulate the traffic classification into a multi-task learning framework where bandwidth requirement and duration of a flow are predicted along with the traffic class. The motivation of this approach is twofold: First, bandwidth requirement and duration are useful in many applications, including routing, resource allocation, and QoS provisioning. Second, these two values can be obtained from each flow easily without the need for human labeling or capturing flows in a controlled and isolated environment. We show that with a large amount of easily obtainable data samples for bandwidth and duration prediction tasks, and only a few data samples for the traffic classification task, one can achieve high accuracy. We conduct two experiment with ISCX and QUIC public datasets and show the efficacy of our approach

    Program Similarity Analysis for Malware Classification and its Pitfalls

    Get PDF
    Malware classification, specifically the task of grouping malware samples into families according to their behaviour, is vital in order to understand the threat they pose and how to protect against them. Recognizing whether one program shares behaviors with another is a task that requires semantic reasoning, meaning that it needs to consider what a program actually does. This is a famously uncomputable problem, due to Rice\u2019s theorem. As there is no one-size-fits-all solution, determining program similarity in the context of malware classification requires different tools and methods depending on what is available to the malware defender. When the malware source code is readily available (or at least, easy to retrieve), most approaches employ semantic \u201cabstractions\u201d, which are computable approximations of the semantics of the program. We consider this the first scenario for this thesis: malware classification using semantic abstractions extracted from the source code in an open system. Structural features, such as the control flow graphs of programs, can be used to classify malware reasonably well. To demonstrate this, we build a tool for malware analysis, R.E.H.A. which targets the Android system and leverages its openness to extract a structural feature from the source code of malware samples. This tool is first successfully evaluated against a state of the art malware dataset and then on a newly collected dataset. We show that R.E.H.A. is able to classify the new samples into their respective families, often outperforming commercial antivirus software. However, abstractions have limitations by virtue of being approximations. We show that by increasing the granularity of the abstractions used to produce more fine-grained features, we can improve the accuracy of the results as in our second tool, StranDroid, which generates fewer false positives on the same datasets. The source code of malware samples is not often available or easily retrievable. For this reason, we introduce a second scenario in which the classification must be carried out with only the compiled binaries of malware samples on hand. Program similarity in this context cannot be done using semantic abstractions as before, since it is difficult to create meaningful abstractions from zeros and ones. Instead, by treating the compiled programs as raw data, we transform them into images and build upon common image classification algorithms using machine learning. This led us to develop novel deep learning models, a convolutional neural network and a long short-term memory, to classify the samples into their respective families. To overcome the usual obstacle of deep learning of lacking sufficiently large and balanced datasets, we utilize obfuscations as a data augmentation tool to generate semantically equivalent variants of existing samples and expand the dataset as needed. Finally, to lower the computational cost of the training process, we use transfer learning and show that a model trained on one dataset can be used to successfully classify samples in different malware datasets. The third scenario explored in this thesis assumes that even the binary itself cannot be accessed for analysis, but it can be executed, and the execution traces can then be used to extract semantic properties. However, dynamic analysis lacks the formal tools and frameworks that exist in static analysis to allow proving the effectiveness of obfuscations. For this reason, the focus shifts to building a novel formal framework that is able to assess the potency of obfuscations against dynamic analysis. We validate the new framework by using it to encode known analyses and obfuscations, and show how these obfuscations actually hinder the dynamic analysis process
    corecore