3,024 research outputs found

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change

    The Promise of Causal Reasoning in Reliable Decision Support for Wind Turbines

    Get PDF
    The global pursuit towards sustainable development is leading to increased adaptation of renewable energy sources. Wind turbines are promising sources of clean energy, but regularly suffer from failures and down-times, primarily due to the complex environments and unpredictable conditions wherein they are deployed. While various studies have earlier utilised machine learning techniques for fault prediction in turbines, their black-box nature hampers explainabil-ity and trust in decision making. We propose the application of causal reasoning in operations & maintenance of wind turbines using Supervisory Control & Acquisition (SCADA) data, and harness attention-based convolutional neural networks (CNNs) to identify hidden associations between different parameters contributing to failures in the form of temporal causal graphs. By interpreting these non-obvious relationships (many of which may have potentially been disregarded as noise), engineers can plan ahead for unforeseen failures, helping make wind power sources more reliable

    Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms - A Review

    Get PDF
    In the wind energy industry, the power curve represents the relationship between the “wind speed” at the hub height and the corresponding “active power” to be generated. It is the most versatile condition indicator and of vital importance in several key applications, such as wind turbine selection, capacity factor estimation, wind energy assessment and forecasting, and condition monitoring, among others. Ensuring an effective implementation of the aforementioned applications mostly requires a modeling technique that best approximates the normal properties of an optimal wind turbines operation in a particular wind farm. This challenge has drawn the attention of wind farm operators and researchers towards the “state of the art” in wind energy technology. This paper provides an exhaustive and updated review on power curve based applications, the most common anomaly and fault types including their root-causes, along with data preprocessing and correction schemes (i.e., filtering, clustering, isolation, and others), and modeling techniques (i.e., parametric and non-parametric) which cover a wide range of algorithms. More than 100 references, for the most part selected from recently published journal articles, were carefully compiled to properly assess the past, present, and future research directions in this active domain

    Explainable AI for Intelligent Decision Support in Operations & Maintenance of Wind Turbines

    Get PDF
    As global efforts in transitioning to sustainable energy sources rise, wind energy has become a leading renewable energy resource. However, turbines are complex engineering systems and rely on effective operations & maintenance (O&M) to prevent catastrophic failures in sub-components (gearbox, generator, etc.). Wind turbines have multiple sensors embedded within their sub-components which regularly measure key internal and external parameters (generator bearing temperature, rotor speed, wind speed etc.) in the form of Supervisory Control & Data Acquisition (SCADA) data. While existing studies have focused on applying ML techniques towards anomaly prediction in turbines based on SCADA data, they have not been supported with transparent decisions, owing to the inherent black box nature of ML models. In this project, we aim to explore transparent and intelligent decision support in O&M of turbines, by predicting faults and providing human-intelligible maintenance strategies to avert and fix the underlying causes. We envisage that in contributing to explainable AI for the wind industry, our method would help make turbines more reliable, encouraging more organisations to switch to renewable energy sources for combating climate change

    Data-driven performance monitoring, fault detection and dynamic dashboards for offshore wind farms

    Get PDF

    Temporal Causal Inference in Wind Turbine SCADA Data Using Deep Learning for Explainable AI

    Get PDF
    © 2020 Published under licence by IOP Publishing Ltd. Machine learning techniques have been widely used for condition-based monitoring of wind turbines using Supervisory Control & Acquisition (SCADA) data. However, many machine learning models, including neural networks, operate as black boxes: despite performing suitably well as predictive models, they are not able to identify causal associations within the data. For data-driven system to approach human-level intelligence in generating effective maintenance strategies, it is integral to discover hidden knowledge in the operational data. In this paper, we apply deep learning to discover causal relationships between multiple features (confounders) in SCADA data for faults in various sub-components from an operational turbine using convolutional neural networks (CNNs) with attention. Our technique overcomes the black box nature of conventional deep learners and identifies hidden confounders in the data through the use of temporal causal graphs. We demonstrate the effects of SCADA features on a wind turbine's operational status, and show that our technique contributes to explainable AI for wind energy applications by providing transparent and interpretable decision support
    • …
    corecore