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ABSTRACT
The global pursuit towards sustainable development is leading to in-
creased adaptation of renewable energy sources. Wind turbines are
promising sources of clean energy, but regularly suffer from failures
and down-times, primarily due to the complex environments and
unpredictable conditions wherein they are deployed. While various
studies have earlier utilised machine learning techniques for fault
prediction in turbines, their black-box nature hampers explainabil-
ity and trust in decision making. We propose the application of
causal reasoning in operations & maintenance of wind turbines us-
ing Supervisory Control & Acquisition (SCADA) data, and harness
attention-based convolutional neural networks (CNNs) to identify
hidden associations between different parameters contributing to
failures in the form of temporal causal graphs. By interpreting these
non-obvious relationships (many of which may have potentially
been disregarded as noise), engineers can plan ahead for unforeseen
failures, helping make wind power sources more reliable.
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1 INTRODUCTION
With the wind energy revolution flourishing, more turbines con-
tinue to be deployed in complex environments, especially offshore
[1]. Thereby, the challenges in operations and maintenance (O&M)
continue to proliferate, leading to significant costs. Wind turbines
consist of sophisticated sensors, which regularly measure opera-
tional parameters from the turbine and its environment [1].1 Addi-
tionally, the records of various faults which occur are logged into
alarm logs and maintenance records. All this information is stored
in the form of Supervisory Control & Acquisition (SCADA) data,
which can be harnessed by AI models for decision support.

Many existing studies have focused on applying traditional ma-
chine learning models (such as support vector machines, decision
trees, probabilistic models etc.) [3] for predictive maintenance with
promising results. More recently, deep learning models (artificial
neural networks, including recurrent neural nets) [4] have proven

1This contains a variety of parameters from both the turbine’s environment (e.g. wind
speed, air pressure, wind direction etc.) as well as its sub-components (e.g. gearbox oil
temperature, generator converter speed etc.)
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to be highly effective in predicting faults with high accuracy, given
the largely non-linear nature of SCADA data with complex pat-
terns of faults. However, this comes at the cost of interpretability
and accountability as they are generally black boxes lacking ratio-
nale behind the decisions. Also, while conventional ML techniques
like decision trees, Bayesian learning etc. can be easier to inter-
pret and more transparent, they can be significantly outperformed
by their deep learning counterparts for time-series data [9]. This
makes most turbine operators prefer signal processing or numerical
simulation-based approaches for O&M. To realise the full potential
of data-driven decision making in the wind energy sector, trust and
confidence has to be instilled into the prediction making of these
conventionally opaque and non-intuitive models. Specifically, the
reasons behind why and how a model makes certain predictions
need to be analysed by the engineers & technicians.

Causal reasoning is an integral cognitive process in making pre-
dictions and explaining complex phenomena [5]. Given that the
SCADA data from turbines is complex and non-linear with presence
of multiple (often hundreds) of features, modelling relationships
between these features during different types of faults can help dis-
cover novel insights in data-driven decision making. While causal
inference has been successfully applied to other domains (such
as medicine and finance) [8, 11], it has seen limited utility in the
wind industry. To the best of our knowledge, the closest application
of such techniques utilises Normal Behaviour Models to identify
the effect of causal inference in improving fault-classification ac-
curacy in turbines [10], but does not provide a solution to identify
the complex hidden relationships in an intuitive manner (such as
through temporal causal graphs). Additionally, it uses hypothetical
simulations rather than real-world data for faults in turbines.

In this study, we propose the application of convolution neu-
ral nets (CNNs) with attention for inference in extracting these
complex relationships in wind turbine SCADA data from an opera-
tional real-world turbine, and identifying the effect of such relations
on the turbine’s operational status. The proposed technique can
help identify hidden relationships (called confounders) as well as
the temporal delay between these causations via temporal causal
graphs. This can contribute to reliable decision support for wind
energy sector and beyond.

2 CASE STUDY
We utilise SCADA data from an operational turbine 2 rated at 7 MW,
and use 102 time-series based features (such as active power, wind
speed, operational parameters of gearbox, generator etc.) labelled
with multiple categories of faults (e.g. in Gearbox, Yaw System,

2Acknowledgement: Platform for Operational Data (POD) from ORE Catapult:
https://pod.ore.catapult.org.uk
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Figure 1: Causal effects (non-obvious) of nacelle angle (𝑋 ) on generator stator temperature (𝑦) during anomaly in Yaw system
using BSTS Approach (Statistically Insignificant). Probability of random occurrence p = 24.88% and 95% interval of percentage
change in 𝑋 and 𝑦 = [-3.44%, 1.73%].

Pitch System etc.) which have historically occurred in the turbine
and have been logged into alarm records. The individual categories
of faults are called Functional Groups. We utilise 21,392 samples
for our study.

2.1 Applying traditional statistical methods
Before applying deep learning based causal inference methods, it is
important to demonstrate the key drawbacks of more traditional
approaches. Initially, we applied the commonly used statistical
approach of Bayesian Structural Time-Series (BSTS) for causal in-
ference [6] 3 to our data. We wanted to explore the role of causal
inference in identifying the hidden relationships between the caus-
ing/intervening variable on the response/outcome variable. As an
example, we demonstrate a relationship which is interpreted as ran-
dom and spurious by traditional methods, but is identified as a hid-
den confounder by the deep learning-based causal inference model
in Section 2.2. Figure 1 depicts the statistical effects of variation
in the turbine’s nacelle angle (intervention) on the generator
stator temperature (response) during an actual anomaly in the
Yaw system. Here, the pre-intervention period shows the predicted
time-series of the response variable using the BSTS model which
we would have expected without the causal event occurring, while
the post-intervention period highlights how the variable changes
as a result of the intervention caused by nacelle angle. Though we
see that the intervention seems to have a negative effect on the
predicted response variable (as the actual time-series distribution
is approximately inverted after the intervention caused by nacelle
angle), this is found to be very minor (a -3.44% change in nacelle
angle causes a 1.73% change in generator stator temperature in
the 95% confidence interval). We found that the BSTS technique
found little significance in how these metrics are causally related,
and interpreted the associations as statistically insignificant and
possibly spurious. To confirm this inference, we calculated the
auto-correlation for this metric as shown in Figure 2. The auto-
correlation components are clearly non-zero for the variations of
the lagged time-series, outlining that the variable is in fact not ran-
dom, but has a temporal nature, motivating us to look for alternate
causal inference models.

As an additional experiment with a recent state-of-art statisti-
cal algorithm for causal inference, we applied the deconfounder
[11], which uses probability factor modelling to identify causal
associations in time-series. We found that the model again ignores
non-obvious relationships as those above. More importantly, both
3https://github.com/dafiti/causalimpact

Figure 2: Auto-correlation for the generator stator tempera-
ture time-series. The components are significantly non-zero,
signifying non-random nature of the metric.

of the compared techniques can only identify cause-effect relation-
ships between univariate causes and outcomes, but significantly
suffer in cases with multiple latent relationships (e.g. during an
anomaly in a turbine, wherein a group of multiple causes can lead to
many possible outcomes). Importantly, we were unable to obtain an
intuitive, e.g. graph-based causal reasoning approach through these
techniques. Thereby, we were motivated to apply deep-learning
based causal inference to our problem.
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Figure 3: Proposed technique for identification of hidden
causal confounders in SCADA data.
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Figure 4: Identified temporal causal relationships in SCADA data during Yaw System anomaly using the proposed learning
model. Here, the relation p → q would signify that p is causally affected by q.

2.2 Deep learning for causal reasoning
We apply Attention-based Dilated Depthwise Separable Temporal
Convolutional Network (AD-DSTCN), first proposed by Nauta et al
[8] for causal inference in the financial and neuroscientific domains.
The data from wind turbines is extremely different from these
domains, and can have multiple hidden confounders corresponding
to specific classes of faults [2]. To realise the model for our domain,
we modified the model architecture as explained below. Figure 3
depicts the methodology utilised briefly.

(a) Applying CNNs in time-series prediction of SCADA fea-
tures. Initially, given the 102 SCADA features in our data, we use
102 individual CNNs (CNN 1 to CNN 𝑛) for predicting the corre-
sponding time-series based feature i.e. each CNN predicts a uni-
variate time-series. The predictions are made per the individual
classes of anomalies in Functional Groups (sub-components) of the
turbine.

(b) Attentionmechanism for hidden confounders. To achieve
causal inference and identify potentially significant relationships,
we modified the original model’s attention mechanism to gener-
ate an attention matrix containing the attention weights for each
identified causal relation between different SCADA features in
our dataset. The weights signify the importance of each SCADA
feature causally affecting another, with a higher score signifying
a greater contribution to the effect. Additionally, the model can
identify the temporal delay between each causally significant time-
series which the CNN predicts during the faults. We assume that
attention weights can represent the SCADA features’ distribution
non-uniformly based on their contributions to causal effects, in
line with Nauta et al.[8] who found that attention weights show
strong connections with causal associations. We utilised the first 20
attention weights for each feature’s causation to identify the most
relevant relationships, as experimenting with different number of
weights in multiples of 10 (i.e. 10, 20, 30 etc.) showed that 20 top-
weights from SCADA features can help to identify most-reasonable

causal associations for our problem in terms of number of hidden
confounders identified and their relevance.

(c) Constructing the temporal causal graph. As the final step,
we integrated the original CNNs with a dilation mechanism (which
can help in identifying causal relationships during large temporal
delays, commonly the case with SCADA data), and the attention
mechanism in (2). This generates a complete causal graph (with
every possible hidden confounder identified by the model) during
different types of anomalies in the turbine. We extracted sub-graphs
corresponding to multiple cases of these faults from the complete
causal graph, and the temporal sub-graphs will only include those
associations wherein the feature is important to the causation (i.e.
any changes or variations in that feature affects another time-series
feature during an anomaly).4

2.3 Evaluation of the learning model
To perform an evaluation on the performance of the proposed ap-
proach, initially, we compared the Mean Absolute Scaled Error
(MASE) during the time-series prediction stage above against the
state-of-art deconfounder [11] baseline from earlier. We observed
that our model achieved a MASE of 1.066, outperforming the base-
line (which achieved an MASE of 3.901) by up to 72.67%.

Due to lack of ground-truth for the causal relationships identified
(given that causal relations are generally hiddenwithin the data, and
define the key features which the model looks at during prediction
making), we performed a qualitative evaluation on the temporal
causal graphs generated by the model based on domain understand-
ing. For this, one of the authors manually tagged the relevance of
the relationships across 14 different types of Functional Groups in
a binary fashion as either relevant or not. Based on this, our model
identified relationships for different types of faults with an average
4We used 80% of 21,392 SCADA measurements for training the learning model, while
remaining 20% was used for testing. A learning rate of 0.01, Adam optimisation and
kernel dimensions 2x2 with dilation coefficient 2 were utilised in the CNN with single
hidden layer in the depthwise kernel.
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relevance score of 54.81%. In some cases, no hidden confounders
were identified at all (e.g. Wind Condition Alarms, possibly due to
the absence of multiple hidden confounding metrics, other than
wind speed). The model achieved scores of up to 66.66% in some
cases (e.g. Pitch System Fault) and higher than 60% relevance for
various other categories (e.g. Yaw System, Pitch Alarms, Normal
Operation etc). We discuss below an interesting case for the same
Yaw system anomaly for which the causality task was discussed
for the traditional statistical algorithms. Our goal here is to show
that the deep-learning based causal inference approach has indeed
real-world applicability and is promising for intelligent and reliable
decision support. Figure 4 shows the sub-graph for the anomaly in
Yaw system of the turbine (which has been our discussion case in
Section 2.1). While the model picks up some obvious relationships
(e.g. average wind speed being causally related to active power,
nacelle angle to wind direction etc.), there are some relationships
which are non-obvious. However, based on domain understanding
and when viewing these relationships in a broader perspective, we
find that many of these non-obvious relationships do indeed have a
deeper meaning. These are the relationships which the traditional
statistical approaches in 2.1 neglected, likely due to the lack of
explicit declarative knowledge representation in these techniques.
They assume that the response (outcome variable) can be effec-
tively modelled using linear regression and would not be affected
by intervention (changes) in the causing variable, which is very
unlikely for SCADA data, with multiple, non-linear features.

Coming to one of the most notable identified relationship, we
see that generator stator temperature mean value is causally re-
lated to the turbine’s nacelle angle. Our deep learning-based causal
reasoning approach identifies this non-obvious relationship. This is
reasonable, considering that the nacelle angle of the turbine is also
having causal associations with the turbine’s pitch angle 5. This
indirectly affects the generator stator of the turbine, which can be
affected during anomalies in the pitch system [7]. The anomaly
in the pitch system here is likely caused due to error in the yaw
system, leading to malfunctioning pitch during frequent start/stop
of the turbine, thereby justifying the effect of yaw anomaly. Addi-
tionally, the model also identifies the time delay (1 time-step ≡ 10
minutes for our data), after which the hidden confounding metrics
take effect. There are several other hidden confounders identified
by the model (e.g. reactive power to power factor), which are rea-
sonable after thorough analysis but not obvious at first, and that
our model can identify. The most problematic area for the causal
learning task is that understanding the hidden relationships is often
a difficult task at times, even for experts with extensive domain
knowledge. Thereby, if engineers neglect the potentially important
(but non-obvious) relationships as insignificant or noise, it may lead
to a catastrophic failure. On the other hand, it is also possible that
some relationships may be completely inaccurate, and are falsely
interpreted as being potential causes for a particular category of
fault. Thereby, we believe it is essential for the engineers to think
out of the box in analysing the temporal causal graphs, and inter-
pret the relationships with an open mind. The proposed approach
can be a powerful tool, when the blessings of deep learning for

5The angle at which the blades are turned to ensure optimal power production

causal inference are used in conjunction with human expertise for
the most optimal maintenance strategies.

3 CONCLUSIONS AND FUTUREWORK
We have proposed a novel application of causal reasoning using
attention-based convolutional neural nets to wind turbine SCADA
data, which can play an integral role in making condition based
monitoring more reliable and robust. Our study shows that deep-
learning based causal reasoning is promising for the wind industry,
and helps identify causal relationships which are generally ne-
glected by traditional statistical causal inference algorithms, By
providing a simple and intuitive way to visualise the causal re-
lationships through temporal causal graphs, the approach brings
more transparency to the predictive AI model, and can provide
novel insights on unexpected significant parameters to continu-
ously monitor during preventive maintenance, to avoid catastrophic
failures. contributing to the goal of Explainable AI. This can be im-
mensely helpful for maintenance engineers, who generally don’t
have sound understanding of AI. However, despite the advantages,
the present approach fails to identify hidden confounders for some
specific types of faults (e.g. wind condition alarms), and qualitative
evaluation of some cases is difficult to establish due to the machine-
oriented patterns discovered by the learning model. We believe that
optimising the model through e.g. more useful data and human
domain knowledge from the wind industry can help to improve
the causal learning approach further. In future, we plan to perform
a larger-scale human evaluation of this technique,and integrate
it with other forms of knowledge (e.g. maintenance manuals and
work orders) for reliable decision support in wind turbines.
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