167 research outputs found

    Uzawa smoother in multigrid for the coupleD porous medium and stokes flow system

    Get PDF
    The multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient multigrid solution technique for the coupled problem, which is discretized by finite volumes on staggered grids, giving rise to a saddle point linear system. Special treatment is required regarding the discretization at the interface. An Uzawa smoother is employed in multigrid, which is a decoupled procedure based on symmetric Gauss–Seidel smoothing for velocity components and a simple Richardson iteration for the pressure field. Since a relaxation parameter is part of a Richardson iteration, local Fourier analysis is applied to determine the optimal parameters. Highly satisfactory multigrid convergence is reported, and, moreover, the algorithm performs very well for small values of the hydraulic conductivity and fluid viscosity, which are relevant for applications

    Uzawa smoother in multigrid for the coupled porous medium and Stokes flow system

    Get PDF
    The multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient multigrid solution technique for the coupled problem, which is discretized by finite volumes on staggered grids, giving rise to a saddle point linear system. Special treatment is required regarding the discretization at the interface. An Uzawa smoother is employed in multigrid, which is a decoupled procedure based on symmetric Gauss--Seidel smoothing for velocity components and a simple Richardson iteration for the pressure field. Since a relaxation parameter is part of a Richardson iteration, local Fourier analysis is applied to determine the optimal parameters. Highly satisfactory multigrid convergence is reported, and, moreover, the algorithm performs very well for small values of the hydraulic conductivity and fluid viscosity, which are relevant for applications

    Decoupling Techniques for Coupled PDE Models in Fluid Dynamics

    Get PDF
    We review decoupling techniques for coupled PDE models in fluid dynamics. In particular, we are interested in the coupled models for fluid flow interacting with porous media flow and the fluid structure interaction (FSI) models. For coupled models for fluid flow interacting with porous media flow, we present decoupled preconditioning techniques, two-level and multilevel methods, Newton-type linearization-based two-level and multilevel algorithms, and partitioned time-stepping methods. The main theory and some numerical experiments are given to illustrate the effectiveness and efficiency of these methods. For the FSI models, partitioned time-stepping algorithms and a multirate time-stepping algorithm are carefully studied and analyzed. Numerical experiments are presented to highlight the advantages of these methods

    Well-posedness and Robust Preconditioners for the Discretized Fluid-Structure Interaction Systems

    Full text link
    In this paper we develop a family of preconditioners for the linear algebraic systems arising from the arbitrary Lagrangian-Eulerian discretization of some fluid-structure interaction models. After the time discretization, we formulate the fluid-structure interaction equations as saddle point problems and prove the uniform well-posedness. Then we discretize the space dimension by finite element methods and prove their uniform well-posedness by two different approaches under appropriate assumptions. The uniform well-posedness makes it possible to design robust preconditioners for the discretized fluid-structure interaction systems. Numerical examples are presented to show the robustness and efficiency of these preconditioners.Comment: 1. Added two preconditioners into the analysis and implementation 2. Rerun all the numerical tests 3. changed title, abstract and corrected lots of typos and inconsistencies 4. added reference

    Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach

    Full text link
    We develop a computational model to study the interaction of a fluid with a poroelastic material. The coupling of Stokes and Biot equations represents a prototype problem for these phenomena, which feature multiple facets. On one hand it shares common traits with fluid-structure interaction. On the other hand it resembles the Stokes-Darcy coupling. For these reasons, the numerical simulation of the Stokes-Biot coupled system is a challenging task. The need of large memory storage and the difficulty to characterize appropriate solvers and related preconditioners are typical shortcomings of classical discretization methods applied to this problem. The application of loosely coupled time advancing schemes mitigates these issues because it allows to solve each equation of the system independently with respect to the others. In this work we develop and thoroughly analyze a loosely coupled scheme for Stokes-Biot equations. The scheme is based on Nitsche's method for enforcing interface conditions. Once the interface operators corresponding to the interface conditions have been defined, time lagging allows us to build up a loosely coupled scheme with good stability properties. The stability of the scheme is guaranteed provided that appropriate stabilization operators are introduced into the variational formulation of each subproblem. The error of the resulting method is also analyzed, showing that splitting the equations pollutes the optimal approximation properties of the underlying discretization schemes. In order to restore good approximation properties, while maintaining the computational efficiency of the loosely coupled approach, we consider the application of the loosely coupled scheme as a preconditioner for the monolithic approach. Both theoretical insight and numerical results confirm that this is a promising way to develop efficient solvers for the problem at hand

    A Domain Decomposition Method for the Steady-State Navier-Stokes-Darcy Model with Beavers-Joseph Interface Condition

    Get PDF
    This paper proposes and analyzes a Robin-type multiphysics domain decomposition method (DDM) for the steady-state Navier-Stokes-Darcy model with three interface conditions. In addition to the two regular interface conditions for the mass conservation and the force balance, the Beavers-Joseph condition is used as the interface condition in the tangential direction. The major mathematical difficulty in adopting the Beavers-Joseph condition is that it creates an indefinite leading order contribution to the total energy budget of the system [Y. Cao et al., Comm. Math. Sci., 8 (2010), pp. 1-25; Y. Cao et al., SIAM J. Numer. Anal., 47 (2010), pp. 4239-4256]. In this paper, the well-posedness of the Navier-Stokes-Darcy model with Beavers-Joseph condition is analyzed by using a branch of nonsingular solutions. By following the idea in [Y. Cao et al., Numer. Math., 117 (2011), pp. 601-629], the three physical interface conditions are utilized together to construct the Robin-type boundary conditions on the interface and decouple the two physics which are described by Navier-Stokes and Darcy equations, respectively. Then the corresponding multiphysics DDM is proposed and analyzed. Three numerical experiments using finite elements are presented to illustrate the features of the proposed method and verify the results of the theoretical analysis

    An Efficient and Long-Time Accurate Third-Order Algorithm for the Stokes–Darcy System

    Get PDF
    A third order in time numerical IMEX-type algorithm for the Stokes–Darcy system for flows in fluid saturated karst aquifers is proposed and analyzed. a novel third-order Adams–Moulton scheme is used for the discretization of the dissipative term whereas a third-order explicit Adams–Bashforth scheme is used for the time discretization of the interface term that couples the Stokes and Darcy components. the scheme is efficient in the sense that one needs to solve, at each time step, decoupled Stokes and Darcy problems. Therefore, legacy Stokes and Darcy solvers can be applied in parallel. the scheme is also unconditionally stable and, with a mild time-step restriction, long-time accurate in the sense that the error is bounded uniformly in time. Numerical experiments are used to illustrate the theoretical results. to the authors\u27 knowledge, the novel algorithm is the first third-order accurate numerical scheme for the Stokes–Darcy system possessing its favorable efficiency, stability, and accuracy properties

    High resolution modeling of transport in porous media

    Get PDF
    This dissertation presents research on the pore-level modeling of transport in porous media. The focus of this work is on high-resolution modeling, a rigorous approach that represents detailed geometry and first-principle physics at the streamline scale. Three major topics are presented in this dissertation: an efficient approach for solving Stokes flow in essentially arbitrary disordered porous media, high-resolution versus network simulations of dispersion phenomena, and a stochastic model for solving interfacial mass transfer from source spheres in porous media. First an approach was developed for solving the Stokes flow problem in a comparatively large, very heterogeneous two-dimensional porous media with high efficiency using a combined domain decomposition and boundary element method. The second topic discussed in this dissertation is the high-resolution and network simulation of dispersion in the porous media for the purpose of evaluating network discretization effects for the hydrodynamic model and the nodal mixing assumption for the solute transport model. It was found that molecular diffusion is not resolved properly with the nodal mixing assumption in the high Peclet number range. The third topic was the development of a stochastic model for simulating interfacial mass transfer from the surface of a single source sphere in a heterogeneous porous medium, which is valid in both low and high Peclet number range
    • 

    corecore