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Chapter

Decoupling Techniques for
Coupled PDE Models in Fluid
Dynamics
Mingchao Cai, Mo Mu and Lian Zhang

Abstract

We review decoupling techniques for coupled PDE models in fluid dynamics. In
particular, we are interested in the coupled models for fluid flow interacting with
porous media flow and the fluid structure interaction (FSI) models. For coupled
models for fluid flow interacting with porous media flow, we present decoupled
preconditioning techniques, two-level and multilevel methods, Newton-type
linearization-based two-level and multilevel algorithms, and partitioned time-
stepping methods. The main theory and some numerical experiments are given to
illustrate the effectiveness and efficiency of these methods. For the FSI models,
partitioned time-stepping algorithms and a multirate time-stepping algorithm are
carefully studied and analyzed. Numerical experiments are presented to highlight the
advantages of these methods.

Keywords: decoupling, linearization, Stokes/Darcy model, FSI model, finite element,
two-level method, Robin-Neumann scheme, β-scheme

1. Introduction

Coupled PDE models have wide applications in the real world. For example, in
fluid dynamics, there are two-phase flow models, fluid structure interaction models,
heat transfer models in fluids etc. In this work, we focus on two typical models:
coupled models for describing fluid flow interacting with porous media flow, and
fluid structure interaction (FSI) models. The first type of models have been validated
by experiments [1] and then justified by using homogenization theory [2, 3]. Appli-
cations include the environmental engineering problem of groundwater contamina-
tion through rivers and the geoscience problem of surface flows filtrating in vuggy
porous media. The second type of models come from many practical applications. For
example, blood flow interacting with vessel wall, compressible fluids interacting with
aircraft wings, as well as slamming and whipping response of ship structure to water
flow. These models are typical multidomain coupled PDE models with multiphysics.
Due to the heterogenenities in subdomain models, it is very difficult to find a unified
approach to solve the different subdomain models simultaneously. Moreover, some
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coupled models have nonlinearity in either subdomain problems or interface coupling
terms. To deal with the difficulties caused by the coupling of different submodels and
the nonlinearity [4–8], we discuss some decoupling techniques [4, 9–20], which have
shown to be very effective and efficient. Among them, we will emphasize the work
proposed by our group members and highlight the novelty and importance of these
algorithms.

The rest of the paper is organized as follows. In Section 2, we introduce the coupled
fluid flow/porous media interacting models. Some decoupling techniques, specifically,
decoupled preconditioners, decoupled two-level and multi-level methods, and
partitioned time schemes will be presented and analyzed. In Section 3, we present
fluid structure interaction models. Partitioned decoupling algorithms include the
Robin-Neumann scheme [14, 15], the β-scheme [13, 21], and the multirate
partitioned schemes [22, 23] will be briefly introduced. Concluding remarks are drawn
in Section 4.

2. Decoupled algorithms for the coupled models of fluid flow interacting
with porous flow

For the linear cases of the coupled models for fluid flow interacting with porous
media flow, we refer to the Stokes/Darcy model studied in [7, 11, 18, 20, 24–30].
For the nonlinear case, we refer to the coupled nonlinear Navier–Stokes/Darcy
model [4–6].

2.1 Coupled models for fluid flow interacting with porous media flow

Let Ω⊂Rd be a domain consisting of a fluid region Ωf and a porous media region

Ωp separated by an interface Γ, as shown in Figure 1, where d ¼ 2 or 3, Ω ¼ Ωf ∪Ωp

and Γ ¼ Ωf∩Ωp. Let nf and np denote the unit outward normal directions on ∂Ωf and

∂Ωp. The interface Γ is assumed to be smooth enough as in [6].
For incompressible Newtonian fluid flow, Navier–Stokes equations of the stress-

divergence form are usually used [31, 32]. ∀t≥0, ∀x∈Ωf ,

Figure 1.
A global domain Ω consisting of a fluid region Ωf and a porous media region Ωp separated by an interface Γ.

2

The Essence of Large-Eddy Simulations



ρf
∂u

∂t
þ u � ∇ð Þu

� �

� divT u, pð Þ ¼ f f ,

divu ¼ 0,

8

<

:

(1)

where ρf is the fluid density, u is the velocity vector, p is the pressure, f f is the

external force,

T u, pð Þ ¼ 2νD uð Þ � pI, with D uð Þ ¼ 1

2
∇uþ ∇uð ÞT
h i

, (2)

is the stress tensor with ν>0 being the kinematic viscosity. By dropping the term
∂u
∂t in (1), the steady state Navier–Stokes equations read as: ∀x∈Ωf ,

ρf u � ∇ð Þu� divT u, pð Þ ¼ f f ,

divu ¼ 0:

(

(3)

In strong form,

�divT u, pð Þ ¼ �νΔuþ ∇p, (4)

because the fluid flow is assumed to be divergence free and div ∇Tu
� �

¼ 0 holds.
Among various porous media flow models, Darcy’s law is the most favored. The

governing variable in Ωp is the so-called piezometric head or pressure head,

ϕ ¼ zþ
pp
ρf g

: (5)

Here, z is the elevation from a reference level (for simplicity, z is assumed to be 0).
Darcy’s law states that the velocity up (also called seepage velocity) in the porous
media region is proportional to the gradient of ϕ [27, 33].

up ¼ �K∇ϕ: (6)

We assume that

α1 x,xð Þ≤ Kx, xð Þ≤ α2 x, xð Þ, ∀x∈Ωp: (7)

Moreover, the divergence of the seepage velocity equals to the source term. This
leads to the following steady state equation:

�div K∇ϕð Þ ¼ f p: (8)

In the time-dependent case, the governing equations in Ωp reads as:

S0ϕt � div K∇ϕð Þ ¼ f p, (9)

where S0 is a specific storage and f p is a source term.

No matter time-dependent or steady state, the key part of the coupled model is a
set of interface conditions, which describe the interaction mechanism of the two
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different types of flows. The following interface conditions have been extensively
used and studied in the literature [1–3, 7, 27, 28]:

u � nf ¼ up � nf ¼ �K∇ϕ � nf ,

�ν ∇unf

� �

� nf þ p ¼ ρgϕ,

�ν ∇unf

� �

� τi ¼
ναBJS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ντi � Kτi
p u � τi, i ¼ 1, … , d� 1:

8

>

>

>

>

<

>

>

>

>

:

(10)

Here, τif gd�1
i¼1 is the unit tangent vector on Γ, αBJS is a positive parameter depending

on the properties of the porous medium. The first interface condition ensures mass
conservation across Γ. The second one is the balance of normal forces across the
interface. The third condition is well known as Beavers-Joseph-Saffman’s law [1, 2],
which states that the slip velocity is proportional to the shear stress along Γ. Without
loss of generality, we impose homogeneous Dirichlet boundary conditions on both of
the external boundaries:

u ¼ 0 on Γf ,

ϕ ¼ 0 on Γp:

(

(11)

The proper functional spaces for u, p and ϕ are

Xf ¼ v∈H1 Ωf

� �

¼ H1 Ωf

� �� �d
v ¼ 0 on Γf

�

�

�

,
n

Q ¼ L2 Ωf

� �

, Xp ¼ ψ ∈H1 Ωp

� �

ψ ¼ 0 on Γp

�

�

�

:
	

(12)

Moreover, we denote X ¼ Xf � Xp for ease of presentation. Multiplying test func-

tions to (3) and (8), integrating by parts and plugging in the interface boundary
conditions (10)–(11), we have the weak form of the coupled Navier–Stokes/Darcy
model: find u ¼ u,ϕð Þ∈X, p∈Q such that

a u, vð Þ þ c u,u, vð Þ þ b v, pð Þ ¼ f vð Þ ∀v ¼ v,ψð Þ∈X,

b u, qð Þ ¼ 0 ∀q∈Q,

(

(13)

where

a u, vð Þ ¼ af u, vð Þ þ ap ϕ,ψð Þ þ aΓ u, vð Þ, b v, pð Þ ¼ �
ð

Ωf

p∇ � v,

c u, v,wð Þ ¼ ρ

ð

Ωf

u � ∇ð Þv �w, f vð Þ ¼
ð

Ωf

f f � vþ ρg

ð

Ωp

f pψ

(14)

with

af u, vð Þ ¼ ν

ð

Ωf

∇u : ∇vþ
X

d�1

i¼1

ναBJS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ντi � Kτi
p

ð

Γ

u � τið Þ v � τið Þ,

ap ϕ,ψð Þ ¼ ρg

ð

Ωp

∇ψ � K∇ϕ, aΓ u, vð Þ ¼ ρg

ð

Γ

ϕv� ψuð Þ � nf :

(15)
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For the wellposedness of the coupled Navier–Stokes/Darcy model, we refer to the
recent results in [5, 6, 34]. It is shown in [34] that if the viscosity is sufficiently large
and the normal velocity across the interface is sufficiently small, then the problem
(14) is wellposed. We follow the assumptions in [34]. In addition to these assumptions
on model parameters and variables, we shall frequently use these properties: a �, �ð Þ is
bounded and coercive; b �, �ð Þ is bounded and satisfies the inf-sup condition [27, 35];

and the nonlinear term can be bounded by using the H1 norm of the three components
[31, 36].

We partition Ωf and Ωp by quasi-uniform triangulations T f ,h and T p,h with a

characteristic meshsize h. Here, we require that the two subdomain triangulations
coincide at Γ. The corresponding finite element spaces are denoted by Xf ,h �
Qh ⊂Xf � Q and Xp,h ⊂Xp, respectively. Moreover, Xf ,h � Qh needs to be stable, i.e.,

there exists a positive constant β such that

sup
vh ∈Xf ,h

b vh, qh
� �

vhj j1,Ωf

≥ β∥qh∥0,Ωf
∀qh ∈Qh: (16)

We assume that the solution of (13) is smooth enough and the finite element
spaces have the following typical approximation properties: for all

u, pð Þ∈Hkþ1 Ωf

� �

∩Xf �Hk Ωf

� �

and ϕ∈Hkþ1 Ωp

� �

∩Xp,

inf
vh ∈Xf ,h, qh ∈Qh

h u� vhj j1,Ωf
þ ∥u� vh∥0,Ωf

þ h∥p� qh∥0,Ωf

n o

≲ hkþ1 uj jkþ1,Ωf
þ pj jk,Ωf


 �

,

(17)

inf
ψh ∈Xp,h

h ϕ� ψhj j1,Ωp
þ ∥ϕ� ψh∥0,Ωp

n o

≲ hkþ1
ϕj jkþ1,Ωp

: (18)

To satisfy the discrete inf-sup condition and the approximation properties
(17)–(18), if k ¼ 1, one may apply the Mini elements [31, 37] in Ωf and the piecewise

linear elements in Ωp; if k≥ 2, the k-th order Taylor-Hood elements [31, 37, 38] can be
applied in Ωf and the piecewise k-th order elements can be adopted in Ωp.

Coupled Algorithm: A conventional finite element discretization applied to the
model problem (13) leads to the discrete problem: Find uh ¼ uh,ϕhð Þ∈Xh ¼
Xf ,h � Xp,h, ph ∈Qh such that

a uh, vhð Þ þ c uh,uh, vhð Þ þ b vh, ph
� �

¼ f vhð Þ ∀vh ¼ vh,ψhð Þ∈Xh,

b uh, qh
� �

¼ 0, ∀qh ∈Qh:

(

(19)

2.2 Decoupled algorithms in the preconditioning steps

As an illustration of decoupled preconditioning techniques, we will consider the
linear Stokes/Darcy model, whose weak form is (19) while the nonlinear term is
dropped. We note that the discrete model in the operator form is

Ap AT
Γ 0

�AΓ Af BT
f

0 Bf 0

2

6

4

3

7

5

ϕh

uh

ph

2

6

4

3

7

5
¼

f f ,h

f p,h
gh

2

6

4

3

7

5
: (20)
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Here Af ,Ap,AΓ, and B ¼ 0,Bf

� �

are the corresponding linear operators induced by

the corresponding bilinear forms in (15) and (16). We denote

A ¼ Ap AT
Γ

�AΓ Af

" #

, and M ¼ A BT

B 0

" #

: (21)

By discarding the coupling interface terms and plugging in 1
ν
I (which leads to

pressure mass matrix) in the (2, 2) block, we have the following block-diagonal
decoupled preconditioner:

PM ¼
A0 0

0
1

ν
Ih

2

4

3

5, with A0 ¼
Ap 0

0 Af

" #

: (22)

By keeping one of B and BT, one can easily construct block-triangular decoupled
preconditioner. GMRES method is used as the outer iterative method. Block diagonal
or block-triangular preconditioners are used in the inner iteration. The effectiveness
and the efficiency of the preconditioners have been verified in [9, 39, 40]. In the

implementation, A�1
0 and the inverse for 1

ν
I should be realized by applying a Multigrid

algorithm or domain decomposition methods. Particularly, when Krylov subspace
methods are used, these inverses should be applied inexactly (for example, using one
V-cycle Multigrid algorithm to provide approximate inverses).

Let us denote

P� ¼
A0 0

0 � 1

ν
Ih

0

@

1

A, (23)

We also propose another preconditioner of the block triangular type:

PT1 ¼
A0 0

B � 1

ν
Ih

0

@

1

A, (24)

by retaining the divergence operator. This preconditioner is still decoupled as the
computation can be carried out in a block forward substitution manner. As an illus-
tration, we illustrate the importance of using preconditioners in Table 1.

We use ∗ ∗ to indicate that the iteration does not converge within the prescribed
maximum number of iterations. N Pð Þ refers to the number of iterations with a
preconditioner P, and no preconditioner is applied when P is simply I. From the table,
it is clear that both P� and PT1 accelerate the convergence of the GMRES method. The
number of iterations based on the two preconditioners is independent of the mesh
refinement. More numerical experiments for testing the robustness with respect to the
physical parameters can be found in [9, 39].

2.3 Decoupling and linearization by two-level and multi-level algorithms

For the mixed Stokes/Darcy model, Mu and Xu in [11] propose a two-grid method
in which the coarse grid solution is used to supplement the boundary conditions at the
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interface for both of the two subproblems. The Two-grid Algorithm proposed in [11]
is composed by the following two steps.

1.Solve the linear part of problem 2:7ð ÞH on a coarse grid: find
uH ¼ uH,ϕHð Þ∈XH ⊂Xh, pH ∈QH ⊂Qh such that

a uH, vHð Þ þ b vH, pH
� �

¼ f , vHð Þ, ∀vH ¼ vH,ψHð Þ∈XH,

b uH, qH
� �

¼ 0, ∀qH ∈QH;

(

(25)

2.Solve a modified fine grid problem: find uH ¼ uh,ϕh
� �

∈Xh, p
h ∈Qh such that

a uH, vh
� �

þ b vh, p
h

� �

¼ f , vhð Þ � aΓ uH, vhð Þ, ∀vh ∈Xh,

b uH, qh
� �

¼ 0, ∀qh ∈Qh:

(

(26)

The main theoretical results for the two grid algorithm are as follows.

Theorem 1. Let uh, ph
� �

be the solution of coupled Stokes/Darcy model, and uH, ph
� �

be defined by and (27) on the fine grid. The following error estimates hold:

ϕh � ϕh
�

�

�

�

Hp
≲H2, (27)

uh � uh
�

�

�

�

Hf
≲H3=2, (28)

ph � ph
�

�

�

�

Q
≲H3=2: (29)

Based on this algorithm, some other improvements have been made. For
example, in [18–20], by sequentially solving the Stokes submodel and the

Darcy submodel, the authors can make ϕh � ϕh
�

�

�

�

Hp
, uh � uh
�

�

�

�

Hf
, and ph � ph

�

�

�

�

Q

are all of order H2. Furthermore, Hou constructed a new auxiliary problem [16]
for the Darcy submodel, and proved that Mu and Xu’s two-grid algorithm

can retain uh � uh
�

�

�

�

Hf
and ph � ph

�

�

�

�

Q
order of H2. It is remarkable that Mu

and Xu’s two-grid algorithm is naturally parallel and of optimal order, if h is of

order H2.
The extension to a multilevel decoupled algorithm can be found in [26]. The

Multilevel Algorithm is as follows:

h DOF N Ið Þ N P�ð Þ N PT1ð Þ

2�2 268 186 41 20

2�3 948 432 45 22

2�4 3556 ∗ ∗ 48 22

2�5 13,764 ∗ ∗ 46 22

2�6 54,148 ∗ ∗ 46 22

Table 1.
Number of iterations for the GMRES method without and with the two preconditioners P� and PT1

.
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1.Solve the linear part of problem 2:7ð ÞH on a coarse grid: find uH ¼
uH,ϕHð Þ∈XH ⊂Xh, pH ∈QH ⊂Qh such that

a uH, vHð Þ þ b vH, pH
� �

¼ f vHð Þ, ∀vH ¼ vH,ψHð Þ∈XH,

b uH, qH
� �

¼ 0, ∀qH ∈QH;

(

(30)

2.Set h0 ¼ H, for j = 1 to L,

find uhj ¼ uhj ,ϕhj
� �

∈Xhj , p
hj ∈Qhj such that

a uhj , vhj


 �

þ b vhj , p
hj


 �

¼ f vhj


 �

� aΓ uhj�1 , vhj


 �

, ∀vhj ∈Xhj ,

b uhj , qhj


 �

¼ 0, ∀qhj ∈Qhj :

8

>

<

>

:

(31)

end.

In our multilevel algorithm, we refine the grid step by step, the coupled problem is
only solved on the coarsest mesh, and linear decoupled subproblems are solved in
parallel on successively refined meshes. We see that the algorithm is very effective
and efficient. Moreover, the theory of the two grid algorithm guarantees that the
approximation properties are good. As an illustration of the effectiveness of the
multilevel algorithm [41], we present numerical results in Table 2.

In the following, we use steady state NS/Darcy model to illustrate how to apply
two-level and multilevel methods to decouple the coupled nonlinear PDE models. The
algorithm combines the two-level algorithms and the Newton-type linearization
[4, 36, 42]. OurNewton Type Linearization Based Two-level Algorithm consists of
the following three steps [17, 43].

1.Solve the coupled problem (19) on a coarse grid triangulation with the meshsize
H: Find uH ¼ uH,ϕHð Þ∈XH and pH ∈QH such that

a uH, vHð Þ þ c uH,uH, vHð Þ þ b vH, pH
� �

¼ f vHð Þ, ∀vH ¼ vH,ψHð Þ∈XH,

b uH, qH
� �

¼ 0, ∀qH ∈QH:

(

(32)

2.On a fine grid triangulation with the meshsize h≤H, sequentially solve two
decoupled and linearized local subproblems:

h ϕh � ϕ
�

�

�

�

1
uh � u
�

�

�

�

1
vh � v
�

�

�

�

1
ph � p

�

�

�

�

0

2�1 4:592� 10�2 1:550� 10�1 1:066� 10�1 8:410� 10�2

2�2 1:152� 10�2 3:958� 10�2 2:664� 10�2 1:752� 10�2

2�4 7:280� 10�4 2:466� 10�3 1:652� 10�3 1:040� 10�3

2�8 5:296� 10�6 9:981� 10�6 7:922� 10�6 1:694� 10�5

Table 2.
Errors between the solutions of multilevel algorithm and the exact solutions (second order discretization).
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Step a. Solve a discrete Darcy problem in Ωp: Find ϕ ∗
h ∈Xp,h such that

ap ϕ ∗
h ,ψh

� �

¼ ρg f p,ψh


 �

Ωp

þ ρg uH � nf ,ψh

� �

Γ
∀ψh ∈Xp,h: (33)

Step b. Solve a modified Navier–Stokes model using the Newton type linearization:
Find u ∗

h ∈Xf ,h and p ∗
h ∈Qh such that

af u ∗
h , vh

� �

þ c uH,u ∗
h , vh

� �

þ c u ∗
h ,uH, vh

� �

þ b vh, p
∗
h

� �

¼ f f , vh

 �

Ωf

�ρg ϕ ∗
h , vh � nf

� �

Γ
þ c uH,uH, vhð Þ ∀vh ∈Xf ,h,

b u ∗
h , qh

� �

¼ 0 ∀qh ∈Qh:

8

>

>

>

<

>

>

>

:

(34)

3.On the same fine grid triangulation, solve two subproblems by using the newly
obtained solution.

Step a. Solve a discrete Darcy problem in Ωp: Find ϕh ∈Xp,h such that

ap ϕh,ψh

� �

¼ ρg f p,ψh


 �

Ωp

þ ρg u ∗
h � nf ,ψh

� �

Γ
∀ψh ∈Xp,h: (35)

Step b. Correct the solution of the fluid flow model: Find uh ∈Xf ,h and ph ∈Qh such that

af uh, vh
� �

þ c uH,uh, vh
� �

þ c uh,uH, vh
� �

þ b vh, p
h

� �

¼ f f , vh

 �

Ωf

�ρg ϕh, vh � nf

� �

Γ
þ c uH,u ∗

h , vh
� �

þ c u ∗
h ,uH � u ∗

h , vh
� �

∀vh ∈Xf ,h,

b uh, qh
� �

¼ 0 ∀qh ∈Qh:

8

>

>

>

<

>

>

>

:

(36)

We remark here that the problem (36) and the problem (34) differ only in the
right hand side. Similarly, the problem (35) and the problem (33) have the same
stiffness matrix. In sum, the advantages of our work exist in that the scaling between
the two meshsizes is better, the algorithm is decoupled and linear on the fine grid level
and the two submodels in the last two steps share the same stiffness matrices.

For the coupled problem (19), by using the properties (16)–(18), the error esti-
mates in the energy norm can be derived by using a fixed-point framework [4, 31].

Moreover, the Aubin-Nitsche duality argument can result in the L2 error analysis of
the problem (19). In summary, we have.

Lemma 1. Let u,ϕ, pð Þ∈Hkþ1 Ωf

� �

�Hkþ1 Ωp

� �

�Hk Ωf

� �

be the solution of the

Navier–Stokes/Darcy model (13) and uh,ϕh, ph
� �

be the FE solution of (19). We assume

that ν is sufficiently large and h is sufficiently small. There holds the following energy norm
estimate for the problem (19).

u� uhj j1,Ωf
þ ϕ� ϕhj j1,Ωp

þ ∥p� ph∥0,Ωf
≲ hk: (37)

Moreover, we have the following L2 error estimate:

∥u� uh∥0,Ωf
þ ∥ϕ� ϕh∥0,Ωp

≲ hkþ1: (38)
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The energy norm estimate (37) is the Lemma 2 in [4]. The L2 error estimate (38)
corresponds to the Lemma 3 in [4]. Detailed proofs of these results can be found in [4].

The following lemma concludes the error estimate of ϕ ∗
h ,u

∗
h , p

∗
h

� �

in the energy norm.
Lemma 2. (Error analysis of the intermediate step two-level solution) Let

ϕ,u, pð Þ and ϕ ∗
h ,u

∗
h , p

∗
h

� �

be defined by the problems (13) and (33)–(34), respectively.

Under the assumptions of Lemma 1, there holds

ϕ� ϕ ∗
h

�

�

�

�

1,Ωp
≲Hkþ1 þ hk, (39)

u� u ∗
h

�

�

�

�

1,Ωf
þ ∥p� p ∗

h ∥0,Ωf
≲Hkþ1 þ hk: (40)

∥u� u ∗
h ∥0,Ωf

≲H2kþ1 þHkþ1hþ hkþ1: (41)

From Lemma 1, we note that the optimal finite element solution error in the

energy norm is of order O hk

 �

. Combining the conclusions of this Lemma, we see that

the intermediate step two-level solution error is still optimal in the energy norm if the

scaling between the two meshsizes is taken to be h ¼ H
kþ1
k . The L2 error analysis is

extended from [4, 20, 31, 37]. Let u and ϕ be the nonsingular solution of (13). From

Lemma 1, the optimal L2 error for the finite element solution is of order O hkþ1

 �

. To

make sure ∥u� u ∗
h ∥0,Ωf

is also of order O hkþ1

 �

, the scaling between the two grids has

to be taken as h ¼ max H
kþ1
k ,H

2kþ1
kþ1

n o

. For instance, if k ¼ 1, we have to set h ¼ H
3
2 to

make sure the L2 error of u ∗
h is optimal. We now show that the final step two-level

solution is indeed a good approximation to the solution of problem (13) .
Theorem 2. (Error analysis of the final step two-level solution) Let ϕ,u, pð Þ and

ϕh,uh, ph
� �

be the solutions of (13) and (35)–(36) respectively. Under the assumptions of

Lemma 1, the following error estimates hold:

ϕ� ϕh
�

�

�

�

1,Ωp
þ u� uh
�

�

�

�

1,Ωf
þ ∥p� ph∥0,Ωf

≲H2kþ1 þHkþ1hþ hk, (42)

Proposition 1. Let ϕ,u, pð Þ and ϕh,uh, ph
� �

be the solutions of (13) and (35)–(36)

respectively. If we take h ¼ H
2kþ1
k for k ¼ 1, 2 and h ¼ H

kþ1
k�1 for k≥ 3, then there holds the

following error estimate.

ϕ� ϕh
�

�

�

�

1,Ωp
þ u� uh
�

�

�

�

1,Ωf
þ ∥p� ph∥0,Ωf

≲ hk: (43)

Finally, we would like to make some comments on the mixed Stokes/Darcy model.
We note that by dropping those trilinear terms (32), (34) and (36), our two-level
algorithm can be naturally applied to the coupled Stokes/Darcy model. We note
that the above algorithms can be naturally extended to multi-level algorithms by
recursively calling the above two-level algorithms [17, 43]. The extension and the
corresponding analysis can be found in [26, 43].

2.4 Decoupled algorithms by partitioned time schemes

The fully evolutionary Stokes/Darcy equations will be used as the model
problem in this subsection to illustrate the partitioned time schemes. We neglect
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the fluid density and the porosity effects in this subsection. We review some
decoupled methods that converge within a reasonable amount of time, and are
stable when the physical parameters are small. More precisely, partitioned time
methods can efficiently solve the surface subproblem and the subsurface subproblem
separately.

For the estimate of the stability, we assume that the solution of the Stokes/Darcy
problem is long-time regular [44]:

u∈W2,∞ 0,∞;L2 Ωf

� �� �

∩W1,∞ 0,∞;H2 Ωf

� �� �

,

ϕ∈W2,∞ 0,∞;L2 Ωp

� �� �

∩W1,∞ 0,∞;H2 Ωp

� �� �

,

p∈L2,∞ 0,∞;H1 Ωf

� �� �

:

(44)

The simplest time scheme for the evolutionary coupled Stokes/Darcy model is the

Backward Euler Algorithm, which reads as: Given un
h, p

n
h,ϕ

n
h

� �

∈Xf ,h � Qh � Xp,h,

find unþ1
h , pnþ1

h ,ϕnþ1
h

� �

∈Xf ,h �Qh � Xp,h, such that for all vh ∈Xf ,h, qh ∈Qh,ψh ∈Xp,h,

unþ1
h � un

h

Δt
, vh

� �

þ af unþ1
h , vh

� �

� pnþ1
h ,∇ � vh

� �

þ g vh � nf ,ϕ
nþ1
h

� �

Γ
¼ fnþ1

f ,ψh


 �

,

qh,∇ � unþ1
h

� �

¼ 0,

8

>

<

>

:

(45)

gS0
ϕnþ1
h � ϕn�1

h

Δt
, vh

� �

þ ap ϕnþ1
h ,ψh

� �

� g unþ1
h � nf ,ψh

� �

Γ
¼ g f nþ1

p ,ψh


 �

: (46)

However, this scheme is fully coupled and each time step one has to solve a
coupled system including both (45) and (46), although, on the other hand, this
scheme enjoys the desirable strong stability and convergence properties. In [12],
Mu and Zhu propose the following backward Euler forward Euler scheme and
combine it with the two-level spatial discretization. We neglect the two-level spatial
discretization in this presentation. Here, the Forward Euler means it discretizes the
coupling term explicitly. Backward Euler Forward Euler Scheme (BEFE): given

un
h, p

n
h,ϕ

n
h

� �

∈Xf ,h � Qh � Xp,h, find unþ1
h , pnþ1

h ,ϕnþ1
h

� �

∈Xf ,h � Qh � Xp,h, such that

for all vh ∈Xf ,h, qh ∈Qh,ψh ∈Xp,h,

unþ1
h � un

h

Δt
, vh

� �

þ af unþ1
h , vh

� �

� pnþ1
h ,∇ � vh

� �

þ g vh � nf ,ϕ
n
h

� �

Γ
¼ fnþ1

f ,ψh


 �

,

qh,∇ � unþ1
h

� �

¼ 0,

8

>

<

>

:

(47)

gS0
ϕnþ1
h � ϕn

h

Δt
, vh

� �

þ ap ϕnþ1
h ,ψh

� �

� g un
h � nf ,ψh

� �

Γ
¼ g f nþ1

p ,ψh


 �

: (48)

The analysis of this can be found in [12, 45]. In particular, the longtime stability
(cf. (51)) of BEFE method was proved in [45] in the sense that no form of Gronwall’s
inequality was used.

Theorem 3. Assume the following time step condition is satisfied

Δt≲ min νk2min , S0ν
2kmin

	 �

, (49)
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Then, BELF algorithm achieves the optimal convergence rate uniformly in time.
The solution of the BEFE method satisfies the uniform in time error estimates:

i. If f f ∈L∞ 0,þ∞;L2 Ωf

� �� �

, f p ∈L∞ 0,þ∞;L2 Ωp

� �� �

, then

un
h

�

�

�

�

2 þ ϕn
h

�

�

�

�

2
≤C, ∀n≥0: (50)

ii. If f f

�

�

�

�

�

�

L∞ 0,þ∞;L2 Ωfð Þð Þ
, f p

�

�

�

�

�

�

L∞ 0,þ∞;L2 Ωpð Þð Þ
are uniformly bounded in Δt, then

un
h

�

�

�

�

2 þ ϕn
h

�

�

�

�

2 þ Δt
X

n

l¼0

∇ul
h

�

�

�

�

2 þ ∇ϕl
h

�

�

�

�

2

 �

≤C, ∀n≥0: (51)

The advantage of this scheme is that it is parallel. As revealed in the time step
restriction (50), the disadvantage of this method is that it may become highly unstable
when the parameters S0 and kmin are small. Another way for uncoupling surface/
subsurface flow models is using splitting schemes which require sequential sub-
problem solves at each time step [46]. As an example, we note that in solving (49),
one can replace un

h by using the most updated solution obtained in the Stokes step.
This will lead to Backward Euler time-split scheme [46]. We skip the details of this
time-split method, interested readers can refer to [46]. By this way, one can design
different sequential splitting schemes. Noting that the BEFE method is only of first
order, in some other decoupled Implicit-explicit (IMEX) methods, one can combine of
the three level implicit method with the coupling terms treated by the explicit method
to achieve high order. For example, Crank–Nicolson Leap-Frog method [47, 48],
second-order backward-differentiation with Gear’s extrapolation, Adam-Moulton-
Bashforth [49]. We present one of them: the Crank–Nicolson Leap-Frog Method for

the evolutionary Stokes/Darcy model: given un�1
h , pn�1

h ,ϕn�1
h

� �

, un
h,P

n
h,ϕ

n
h

� �

∈Xf ,h �
Qh � Xp,h, find unþ1

h , pnþ1
h ,ϕnþ1

h

� �

∈Xf ,h � Qh � Xp,h, such that for all

vh ∈Xf ,h, qh ∈Qh,ψh ∈Xp,h,

unþ1
h � un�1

h

2Δt
, vh

� �

þ ∇ � unþ1
h � un�1

h

2Δt
, vh

� �

,∇ � vh
� �

þ af
unþ1
h þ un�1

h

2
, vh

� �

� pnþ1
h � pn�1

h

2
,∇ � vh

� �

þ g vh,ϕ
n
h

� �

Γ
¼ f nf , vh


 �

,

qh,∇ � u
nþ1
h � un�1

h

2

� �

¼ 0,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(52)

gS0
ϕnþ1
h � ϕn�1

h

2Δt
,ϕh

� �

þ ap
ϕnþ1
h þ ϕn�1

h

2
,ψh

� �

h

� g un
h,ψh

� �

Γ
¼ g f np,ψh


 �

: (53)

The Crank–Nicolson-Leap-Frog possesses strong stability and convergence prop-
erties [47, 48]. Most importantly, the time-step condition for the scheme does not
depend on κmin .
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For the numerical experiments of these partitioned time schemes, we refer the
readers to [12].

3. FSI models and decoupled algorithms

FSI models include a fluid model whose general form is (1), a structure model, plus
certain interface conditions that describe the interaction mechanism (see Figure 2 for
an illustration of FSI models in the reference configuration and the deformed config-
uration). To differentiate the notations in different subdomains, we will use a sub-
script “f” to denote the variables in the fluid domain, and a subscript “s” to denote the
variables in the structure domain.

In general, the structure model reads as:

ρs
∂us

∂t
þ us � ∇ð Þus

� �

� divT us, ps
� �

¼ f s, ∀x∈Ωs,

divus ¼ 0, ∀x∈Ωs:

8

<

:

(54)

Here, ρs is the density of the structure, us is the structure velocity, ps is the
structure pressure. In structure mechanics, the displacement d is usually used as a

primary variable ( _d ¼ us), and the stress term in the linear case can be described by
using Hooke’s law. As the structure model is usually based on Lagrangian coordinates,
researchers usually introduce the so-called Arbitrary Lagrangian Eulerian description
for FSI models. In some special cases of FSI models, one can apply the simplified
structure model such as 1D structure model or linear elasticity model for structure
part, and the simplified fluid model such as linear Stokes or inviscid flow model for
fluid part.

The fluid motion and the structure motion are coupled through certain interface
conditions that describe the compatibility of the kinematics and transactions at the
fluid–structure interface. For applications with non-slip interface conditions, both
velocity and normal stress are continuous across the interface Γ, which may be
described as

uf ¼ us, on Γ,

T uf , pf


 �

n ¼ T us, ps
� �

n, on Γ:

8

<

:

(55)

Figure 2.
An illustration of fluid structure interaction: the reference configuration (left) and the deformed configuration
(right).
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Here, n denotes one of nf and ns. With suitable initial conditions and boundary

conditions such as fluid flux boundary condition and structure Dirichlet boundary
condition, the FSI models are complete.

There have been many advanced numerical methods for various FSI models.
Our focus here is a linear fluid model coupled with a thin wall structure. The reason
we choose this model is that this kind of models, if calculated using the standard
(Dirichlet-Neumann) explicit decoupling schemes will lead to the so-called added
mass effect [50]. Moreover, the algorithms dealing with the added-mass difficulties
are the most exciting development in this direction. Therefore, we consider dropping
the nonlinear term in (1), and consider the following 1D structure model:

ρsε∂t
_dþ Ls d, _d


 �

¼ �T uf , pf


 �

n, on Γ,

us ¼ _d on Γ:

8

<

:

(56)

Here, ε denotes the structure thickness, Ls d, _d

 �

denotes the operator in the structure

model, which may include both the elastic term and the damping term [14, 15].

3.1 Partitioned algorithms for FSI models

First of all, we comment here that the decoupled preconditioning techniques can
also be naturally applied to FSI models. In the preconditioning step, one can apply
either the Multigrid approach [51] or domain decomposition methods [52].

In this presentation, we focus on the two most recent approaches for the linear
Stokes model coupled with thin wall structure. The first approach is called partitioned
Robin-Neumann scheme, in which the fluid subproblem is imposed with Robin
boundary condition at the interface while the structure subproblem is imposed with
Neumann boundary conditioner at the interface [14, 15]. The second approach is
called kinetically coupled β-scheme, which is actually decoupled in the sense that
computations are realized subdomain by subdomain [13, 21]. The derivation of the β-
scheme is based on operator splitting.

Partitioned Robin-Neumann scheme:

1.Given the initial solution u0
f ,p

0
f and d0.

2.For m ¼ 0, 1, 2, 3, … ,N � 1,

• Fluid step: find umþ1
f and pmþ1

f such that

ρf

Δt
umþ1
f � um

f


 �

� divT umþ1
f , pmþ1

f


 �

¼ 0 in Ωf ,

divumþ1
f ¼ 0 in Ωf ,

T umþ1
f , pmþ1

f


 �

nþ ρsε

Δt
umþ1
f ¼ ρsε

Δt
_d
m þ T um

f , p
m


 �

n on Γ:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(58)

• Structure step: find dmþ1
s such that

14

The Essence of Large-Eddy Simulations



ρsε

Δt
_d
mþ1 � _d

m

 �

þ Ls dmþ1, _d
mþ1


 �

¼ �T umþ1
f , pmþ1

f


 �

n on Γ,

_d
mþ1 ¼ 1

Δt
dmþ1 � dm� �

on Γ, :

8

>

<

>

:

(59)

3.End

Here, ρsε
Δt is treated as a Robin coefficient. These partitioned iterative methods were

firstly introduced in [53], as added-mass free alternatives to the standard Dirichlet-
Neumann scheme. Some extensions and generalizations can be found in [14, 15].

Different from the partitioned Robin-Neumann scheme. The kinematically
coupled β-scheme for the time-discrete problem is given as follows. The stability and
the convergence rate of this scheme are analyzed in [13, 21].

1.Given the initial solution u0
f ,p

0
f and d0.

2.For m ¼ 0, 1, 2, 3, … ,N � 1,

• Structure step: find ~umþ1
s such that

ρsε
~umþ1
s � um

s

Δt
þ Ls dmþ1, _d

mþ1

 �

¼ �βσf um
f , p

m
f


 �

n on Γ,

_d
mþ1 ¼ ~umþ1

s ,dmþ1 ¼ dm þ Δt~umþ1
s on Γ:

8

>

<

>

:

(60)

• Fluid step: find umþ1
f , pmþ1

f and umþ1
s such that

ρf

Δt
umþ1
f � um

f


 �

� divσf umþ1
f , pmþ1

f


 �

¼ 0 in Ωf ,

divumþ1
f ¼ 0 in Ωf ,

ρsε
umþ1
s � ~umþ1

s

Δt
¼ �σf umþ1

f , pmþ1
f


 �

nþ βσf um
f , p

m
f


 �

n on Γ,

umþ1
f ¼ umþ1

s on Γ:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(61)

3.End.

3.2 Multirate time step approach for FSI models

Due to different time scales in many FSI problems, it is natural and essential to
develop multirate time-stepping schemes [22, 23] that mimic the physical phenomena.
For illustration, we will examine the application of the multirate technique to the β-
scheme, since similar performance is observed for both the Robin-Neumann scheme
and the β-scheme in numerical experiments. Furthermore, the decoupled multirate
β-scheme can be extended to more general FSI problems involving nonlinearity,
irregular domains, and large structural deformations.
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In order to apply multirate time-stepping scheme to FSI problems, a question is in
which region the larger time step size should be used. Numerical experiments suggest
that the version with a larger time step size in the fluid solver (cf. Figure 3) results in a
better accuracy. The corresponding method is described in the following. We com-
ment here that the multirate β-scheme is nothing else but the β-scheme itself when the
time-step ratio r ¼ 1.

Multirate time-stepping β-scheme:

1.Given the initial solution u0
f ,p

0
f and d0.

2.For k ¼ 0, 1, 2, 3, … ,N � 1, set mk ¼ r � k.

• Structure steps: for m ¼ mk,mk þ 1,mk þ 2, … ,mkþ1 � 1,

ρsε
~umþ1
s � um

s

Δts
þ Ls dmþ1, _d

mþ1

 �

¼ �βσf umk

f , pmk

f


 �

n on Γ,

_d
mþ1 ¼ ~umþ1

s ,dmþ1 ¼ dm þ Δts~u
mþ1
s on Γ:

8

>

<

>

:

(62)

• Fluid step:
ρf

Δtf
umkþ1

f � umk

f


 �

� divσf umkþ1

f , pmkþ1

f


 �

¼ 0 in Ωf ,

divumkþ1

f ¼ 0 in Ωf ,

ρsε
umkþ1
s � ~umkþ1

s

Δtf
¼ �σf umkþ1

f , pmkþ1

f


 �

nþ βσf umk

f , pmk

f


 �

n on Γ,

umkþ1

f ¼ umkþ1
s on Γ:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(63)

3.End.

3.3 Numerical experiment

In this subsection, we present numerical experiments to demonstrate the conver-
gence and stability performance of the multirate β-scheme (61)–(62) for coupling a
Stokes flow with a thin-walled structure by using a benchmark model. The model

llll ll

in
f

in
s

 t
f

 t
s

llll ll

in
f

in
s

 t
f

 t
s

Figure 3.
An illustration of a multirate time stepping technique.
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consists of a 2-D rectangular fluid domain Ωf ¼ 0,L½ � � 0,R½ � with L ¼ 6 and R ¼ 0:5

and a 1-D structure domain Γ ¼ 0,L½ � � R that meanwhile also plays the role of the
fluid–solid interface, as shown in Figure 2. The displacement of the interface is
assumed to be infinitesimal and the Reynolds number in the fluid is assumed to be
small (Figure 4). All the quantities will be given in terms of the centimeter-gram-
second (CGS) system of units.

The physical parameters are set as follows: ρf ¼ 1:0, ρs ¼ 1:1, μ ¼ 0:035;

Ls d, _d

 �

¼ c1∂
2
xdþ c0d, where c1 ¼ Eε

2 1þνð Þ, c0 ¼ Eε
R2 1�ν2ð Þ with ε ¼ 0:1, the Poisson ratio

ν ¼ 0:5 and the Young’s modulus E ¼ 0:75 � 106. A pressure-wave

P tð Þ ¼ Pmax 1� cos 2tπ=T ∗ð Þð Þ=2 with Pmax ¼ 2 � 104, (64)

is prescribed on the fluid inlet boundary for T ∗ ¼ 5 � 10�3 (seconds). Zero traction
is enforced on the fluid outlet boundary and no-slip condition is imposed on the lower
boundary y ¼ 0. For the solid, the two endpoints are fixed with d ¼ 0 at x ¼ 0 and
x ¼ 6.

The first experiment is set up to compare the Robin-Neumann scheme with the β-
scheme, the two stable decoupled methods recently developed for the benchmark
model. Figure 5 displays the displacements computed by the Robin-Neumann scheme
and the β-scheme, together with the coupled implicit scheme for reference, where the

Figure 4.
Geometrical configuration.

Figure 5.
Comparisons of the numerical results obtained by the coupled implicit scheme, the RN scheme, and the β-scheme
under the setting: h ¼ 0:05 and Δts ¼ 10�4.
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mesh size and the time step size are h ¼ 0:05 and Δt ¼ 10�4. It is clearly seen that both
decoupled schemes converge as well as the coupled implicit scheme. Moreover, little
difference is observed between the two decoupled schemes numerically. This suggests
we focus on the β-scheme for investigating the multirate time-step technique.

We then conduct numerical experiments to investigate the effects of the time-step
ratio r. Figure 6 illustrates that a larger time step size in the fluid part results in a more
accurate numerical solution than that obtained by using a larger step size in the

structure part. In the test, we fix h ¼ 0:1 and Δt ¼ 10�5. In addition, we observe that,

when Δts
Δtf

is further increased to be Δts
Δtf

¼ 5 or Δts
Δtf

¼ 10, there are substantial numerical

instability. This screens out the possibility of using a larger time step size in the
structure part.

To examine how the stability and approximation are affected when the time step in
the fluid region is too large, we fix the time step Δts and h while varying the time-step
ratio r ¼ 1, 5, 10, 20, 50. Figure 7 displays the computed displacements at t ¼ 0:015

with the structure time step size Δts ¼ 10�5, the mesh size h ¼ 0:1 (left) and h ¼ 0:01
(right). In the left figure, we observe that the structure displacements computed by
using r ¼ 1, 2, 5, 10 approximate very well to that by using the coupled implicit
scheme. To further investigate the stability and the convergence of the multirate β-
scheme, in the right part of Figure 7, we reduce the mesh size to be h ¼ 0:01 while
fixing the time step size. The numerical results confirm that the multirate β-scheme is
still stable even the time-step ratio is reasonably large.

In Figure 8, we present the numerical results of the fluid pressure distribution at
t ¼ 0:005, 0:01, 0:015. From the top to the bottom, numerical results are: a reference
solution by the coupled implicit scheme, the numerical solution by the β-scheme, and
the solution by the multirate β-scheme with r ¼ 10. By comparing the results, we see
that the multirate β-scheme provides a very good approximation.

In order to examine the order of convergence, we start with h ¼ 0:1 and Δts ¼
0:0001, and then refine the mesh size by a factor of 2 and the time step size by a factor
of 4. The space–time size settings are:

Figure 6.
Comparison of the β-scheme and the multirate β-schemes with two different time-step ratios (h ¼ 0:1 and
Δt ¼ 10�5 are fixed).
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h,Δtsf gi ¼ 0:1 � 0:5ð Þi, 0:0001 � 0:25ð Þi
n o

, i ¼ 0, 1, 2, 3, 4: (65)

We compare the numerical solutions of the multirate β-scheme with the reference
solution. The reference solution is computed by using the coupled implicit scheme

with a high space–time grid resolution h ¼ 3:125� 10�3,Δt ¼ 10�6
� �

as that in [14].
In the multirate scheme, r ¼ 1 and r ¼ 10. The relative errors of the primary variables
(uf , pf and d) at t ¼ 0:015 are displayed in Figure 9. From the comparisons, we see

that the numerical errors are approximately reduced by a factor of 4 as the mesh size

Figure 7.
Numerical displacements under the settings: h ¼ 0:1 (left) h ¼ 0:01 (right) and Δts ¼ 10�5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.
Fluid pressure distribution at t ¼ 0:005, 0:010, 0:015 obtained by the coupled implicit scheme (top), the multirate
β-scheme with r ¼ 1 (middle) and r ¼ 10 (bottom) with h ¼ 0:01 andΔts ¼ 0:00001. (a) t = 0.005, (b) t = 0.010,
(c) t = 0.015, (d) t = 0.005, (e) t = 0.010, (f) t = 0.015, (g) t = 0.005, (h) t = 0.010, (i) t = 0.015.
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and the time step size are refined once. Therefore, the multirate β-scheme is of a
second order in h and a first order in t.

Finally, in order to demonstrate the advantage of the multirate β-scheme, we
compare inTable 3 the CPU times of the concerned numerical algorithms under various

settings.We fixedΔts ¼ 10�5 and varying themesh sizes as h ¼ 1
10 ,

1
20 ,

1
40 ,

1
80 ,

1
160. From

the table, it is observed that the multirate β-scheme takes much less computational cost
than that of the coupled implicit scheme, particularly when r is large.

Figure 9.
Relative errors of primary variables with the spacing h and time step size Δts in (65). (a) Relative error of uf,
(b) Relative error of pf, (c) Relative error of d.

Implicit scheme Multirate β-scheme r = 1 Multirate β-scheme r = 10

h ¼ 1
10

14.90 4.02 0.74

h ¼ 1
20

48.64 16.00 2.82

h ¼ 1
40

179.83 66.67 11.6

h ¼ 1
80

797.76 297.96 49.23

h ¼ 1
160

3165.26 1270.30 206.32

Table 3.
CPU times (in seconds) for the coupled implicit scheme and the multirate β-scheme (with r ¼ 1 or 10) under
different settings of mesh sizes (Δts ¼ 10�5 is fixed).
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4. Concluding remarks

In numerical methods for coupled multidomain PDE models, there are usually two
types of methods: the monolithic methods and the partitioned (or decoupled)
methods. The monolithic methods usually require a code developed for the coupled
problem being solved globally. In contrast, the partitioned approach preserves soft-
ware modularity because one can use existing subdomain solvers. The advantages of
using monolithic methods exist in that they provide better approximation accuracy
and usually have better stability than the decoupled methods. The drawback is that
the computation costs based on the monolithic approaches are usually high. In com-
parison, the partitioned approaches allow reusing existing software which is an
attractive advantage. However, the accuracy and stability of the partitioned method
need to be taken into consideration. Nevertheless, from our research works, we also
note that one can apply decoupling techniques in monolithic methods, for example,
decoupled preconditioners and schemes which are parallel in time. On the other hand,
in partitioned algorithms, one can also try to apply coupling numerical techniques
such as extrapolations using previous time-step solutions, interpolation using the
coarse-grid solution, or extrapolations between subdomain solutions. In this work, we
review the decoupling algorithms for the coupled models of fluid flow interacting
with porous media flow and FSI models. We show how to decouple the coupled PDE
models using preconditioning, two-level and multi-level algorithms, and partitioned
time schemes. We attach importance to the decoupling numerical techniques while
also emphasizing how to preserve the coupled multidomain physics features. This
review provides a general framework for designing decoupled algorithms for coupled
PDE models and exhibits the philosophy of the interplays between PDE models and
the corresponding numerical methods.
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