4,385 research outputs found

    An adaptation reference-point-based multiobjective evolutionary algorithm

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.It is well known that maintaining a good balance between convergence and diversity is crucial to the performance of multiobjective optimization algorithms (MOEAs). However, the Pareto front (PF) of multiobjective optimization problems (MOPs) affects the performance of MOEAs, especially reference point-based ones. This paper proposes a reference-point-based adaptive method to study the PF of MOPs according to the candidate solutions of the population. In addition, the proportion and angle function presented selects elites during environmental selection. Compared with five state-of-the-art MOEAs, the proposed algorithm shows highly competitive effectiveness on MOPs with six complex characteristics

    A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.A multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem (MOP) into a number of scalar optimization subproblems and optimizes them in a collaborative manner. In MOEA/D, decomposition mechanisms are used to push the population to approach the Pareto optimal front (POF), while a set of uniformly distributed weight vectors are applied to maintain the diversity of the population. Penalty-based boundary intersection (PBI) is one of the approaches used frequently in decomposition. In PBI, the penalty factor plays a crucial role in balancing convergence and diversity. However, the traditional PBI approach adopts a fixed penalty value, which will significantly degrade the performance of MOEA/D on some MOPs with complicated POFs. This paper proposes an angle-based adaptive penalty (AAP) scheme for MOEA/D, called MOEA/D-AAP, which can dynamically adjust the penalty value for each weight vector during the evolutionary process. Six newly designed benchmark MOPs and an MOP in the wastewater treatment process are used to test the effectiveness of the proposed MOEA/D-AAP. Comparison experiments demonstrate that the AAP scheme can significantly improve the performance of MOEA/D

    A novel multi-objective evolutionary algorithm based on space partitioning

    Get PDF
    To design an e ective multi-objective optimization evolutionary algorithms (MOEA), we need to address the following issues: 1) the sensitivity to the shape of true Pareto front (PF) on decomposition-based MOEAs; 2) the loss of diversity due to paying so much attention to the convergence on domination-based MOEAs; 3) the curse of dimensionality for many-objective optimization problems on grid-based MOEAs. This paper proposes an MOEA based on space partitioning (MOEA-SP) to address the above issues. In MOEA-SP, subspaces, partitioned by a k-dimensional tree (kd-tree), are sorted according to a bi-indicator criterion de ned in this paper. Subspace-oriented and Max-Min selection methods are introduced to increase selection pressure and maintain diversity, respectively. Experimental studies show that MOEA-SP outperforms several compared algorithms on a set of benchmarks

    Scalarizing Functions in Bayesian Multiobjective Optimization

    Get PDF
    Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving (computationally) expensive multi- and many-objective optimization problems in Bayesian multiobjective optimization is scarce. Scalarizing functions can play a crucial role on the quality and number of evaluations required when doing the optimization. In this article, we study and review 15 different scalarizing functions in the framework of Bayesian multiobjective optimization and build Gaussian process models (as surrogates, metamodels or emulators) on them. We use expected improvement as infill criterion (or acquisition function) to update the models. In particular, we compare different scalarizing functions and analyze their performance on several benchmark problems with different number of objectives to be optimized. The review and experiments on different functions provide useful insights when using and selecting a scalarizing function when using a Bayesian multiobjective optimization method

    A test problem for visual investigation of high-dimensional multi-objective search

    Get PDF
    An inherent problem in multiobjective optimization is that the visual observation of solution vectors with four or more objectives is infeasible, which brings major difficulties for algorithmic design, examination, and development. This paper presents a test problem, called the Rectangle problem, to aid the visual investigation of high-dimensional multiobjective search. Key features of the Rectangle problem are that the Pareto optimal solutions 1) lie in a rectangle in the two-variable decision space and 2) are similar (in the sense of Euclidean geometry) to their images in the four-dimensional objective space. In this case, it is easy to examine the behavior of objective vectors in terms of both convergence and diversity, by observing their proximity to the optimal rectangle and their distribution in the rectangle, respectively, in the decision space. Fifteen algorithms are investigated. Underperformance of Pareto-based algorithms as well as most state-of-the-art many-objective algorithms indicates that the proposed problem not only is a good tool to help visually understand the behavior of multiobjective search in a high-dimensional objective space but also can be used as a challenging benchmark function to test algorithms' ability in balancing the convergence and diversity of solutions
    corecore