10,743 research outputs found

    Hybrid choice model for propensity to travel and tour complexity

    Get PDF
    During the last years cities around the world have invested important quantities of money in measures for reducing congestion and car-trips. Investments which are nothing but potential solutions for the well-known urban sprawl phenomenon, also called the “development trap” that leads to further congestion and a higher proportion of our time spent in slow moving cars. Over the path of this searching for solutions, the complex relationship between urban environment and travel behaviour has been studied in a number of cases. The main question on discussion is, how to encourage multi-stop tours? Thus, the objective of this paper is to verify whether unobserved factors influence tour complexity. For this purpose, we use a data-base from a survey conducted in 2006-2007 in Madrid, a suitable case study for analyzing urban sprawl due to new urban developments and substantial changes in mobility patterns in the last years. A total of 943 individuals were interviewed from 3 selected neighbourhoods (CBD, urban and suburban). We study the effect of unobserved factors on trip frequency. This paper present the estimation of an hybrid model where the latent variable is called propensity to travel and the discrete choice model is composed by 5 alternatives of tour type. The results show that characteristics of the neighbourhoods in Madrid are important to explain trip frequency. The influence of land use variables on trip generation is clear and in particular the presence of commercial retails. Through estimation of elasticities and forecasting we determine to what extent land-use policy measures modify travel demand. Comparing aggregate elasticities with percentage variations, it can be seen that percentage variations could lead to inconsistent results. The result shows that hybrid models better explain travel behavior than traditional discrete choice models

    Distributed localized contextual event reasoning under uncertainty

    Get PDF
    We focus on Internet of Things (IoT) environments where sensing and computing devices (nodes) are responsible to observe, reason, report and react to a specific phenomenon. Each node captures context from data streams and reasons on the presence of an event. We propose a distributed predictive analytics scheme for localized context reasoning under uncertainty. Such reasoning is achieved through a contextualized, knowledge-driven clustering process, where the clusters of nodes are formed according to their belief on the presence of the phenomenon. Each cluster enhances its localized opinion about the presence of an event through consensus realized under the principles of Fuzzy Logic (FL). The proposed FLdriven consensus process is further enhanced with semantics adopting Type-2 Fuzzy Sets to handle the uncertainty related to the identification of an event. We provide a comprehensive experimental evaluation and comparison assessment with other schemes over real data and report on the benefits stemmed from its adoption in IoT environments

    A Framework for Spatio-Temporal Data Analysis and Hypothesis Exploration

    Get PDF
    We present a general framework for pattern discovery and hypothesis exploration in spatio-temporal data sets that is based on delay-embedding. This is a remarkable method of nonlinear time-series analysis that allows the full phase-space behaviour of a system to be reconstructed from only a single observable (accessible variable). Recent extensions to the theory that focus on a probabilistic interpretation extend its scope and allow practical application to noisy, uncertain and high-dimensional systems. The framework uses these extensions to aid alignment of spatio-temporal sub-models (hypotheses) to empirical data - for example satellite images plus remote-sensing - and to explore modifications consistent with this alignment. The novel aspect of the work is a mechanism for linking global and local dynamics using a holistic spatio-temporal feedback loop. An example framework is devised for an urban based application, transit centric developments, and its utility is demonstrated with real data

    Network-wide assessment of 4D trajectory adjustments using an agent-based model

    Get PDF
    This paper presents results from the SESAR ER3 Domino project. It focuses on an ECAC-wide assessment of two 4D-adjustment mechanisms, implemented separately and conjointly. These reflect flight behaviour en-route and at-gate, optimising given (cost) objective functions. New metrics designed to capture network effects are used to analyse the results of a microscopic, agent based model. The results show that some implementations of the mechanisms allow the protection of the network from ‘domino’ effects. Airlines focusing on costs may trigger additional side-effects on passengers, displaying, in some instances, clear trade-offs between passenger- and flight-centric metrics

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment
    corecore