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Abstract: We present a general framework for pattern discovery and hypothesis exploration in spatio-temporal
data sets that is based on delay-embedding. This is a remarkable method of nonlinear time-series analysis that
allows the full phase-space behaviour of a system to be reconstructed from only a single observable (accessible
variable). Recent extensions to the theory that focus on a probabilistic interpretation extend its scope and allow
practical application to noisy, uncertain and high-dimensional systems. Our framework uses these extensions to
aid alignment of spatio-temporal sub-models (hypotheses) to empirical data - for example, satellite images plus
remote-sensing - and to explore behaviours consistent with this alignment. The novel aspect of the work is a
mechanism for linking global and local dynamics using a holistic spatio-temporal feedback loop. An example
framework is devised for an urban planning application, transit-oriented developments, and its feasibility is
demonstrated with real data.
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1 INTRODUCTION

The continual acceleration of satellite imaging and
evolution of remote-sensing techniques provide
massive amounts of data, and potentially massive
amounts of knowledge. Because space-time data is
based in the same space-time we are so immersed
in, it is perhaps more conceptually intuitive than
that contained in standard data warehouses. At the
same time, traditional data analysis techniques that
ignore the spatio-temporal location of data attributes
perform poorly. Thus spatio-temporal data analysis
is both subtly and significantly different. As a re-
search field it is young and, though rapidly develop-
ing, much of the territory is unmapped.

Most current approaches to spatio-temporal data
analysis focus on a two-step process: identifying
objects in space, then tracking them in time. Good
examples of these are the combination of a Kalman
filter (for tracking) with spatial analysis techniques
such as Kriging (Huang and Cressie [1996]), or
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Markov Random Fields (Chawla [2003]). This is an
intuitively reasonable approach, however there are
already some fundamental restrictions imposed by
such a reductionist treatment of space-time. Con-
sider a bush-fire scenario where, until the fire has
run out of flammable material or been extinguished,
there will be a front moving over the landscape.
Imagine that a satellite is monitoring the fire and
taking images: for each instantaneous image, the
corresponding pattern would be a step function at
the location of the front. Even if the proper static
patterns can be identified, a dynamical description
would have to incorporate a vast number of them,
one that is exponential in the size of the system.
This is because the front may be moving over the
whole extent of the system - re-use of region-limited
patterns is not an option. 1

Another of the more significant obstacles to a sys-
tematic analysis of space-time data is that of scaling.
For example results obtained at one particular level
of detail (resolution) may be no longer valid at dif-
ferent levels. The incorporation of domain knowl-
edge in particular is hampered by inadequate con-
sideration of scale-dependence, because it often is
patchy at any particular resolution and yet is poten-
1This scenario is modified from a more abstract example in
Kantz and Schrieber [1997], p. 247
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tial very powerful when considered across all scales.

We present a general framework for pattern dis-
covery in spatio-temporal data sets that extends out
from time-series analysis techniques, and focuses
on non-autonomous dynamics. The novel aspect of
the work is a mechanism for linking global and local
dynamics using a holistic spatio-temporal feedback
loop. The holistic space-time approach avoids the
problem of explosion in number of patterns to track,
and the feedback between local and global scales fa-
cilitates integration of domain knowledge.

We consider an urban planning application to illus-
trate the framework. This is a good test domain be-
cause it is highly active in both space and time, it
requires global understanding yet is extremely data
rich on local scales, and there is both scope and
need for integration with domain-knowledge. This
paper builds on work presented in Campbell et al.
[2005] which emphasised the utility of the approach
for multi-agent system construction and calibration.
Here we focus on spatio-temporal data analysis and
a real world application.

The framework, Forced Dynamical Pattern Discov-
ery (FDPD), is introduced in Section 2. We then de-
scribe the application in Section 3. Results are pre-
sented and discussed in Section 3.4. We conclude
and discuss future work in Section 4.

2 FORCED DYNAMICAL PATTERN DISCOVERY

2.1 Space, Time and Data

Data mining is the automated search for knowledge
that is hidden in large collections of data. The prim-
itives of such data collections are known as ‘at-
tributes’. In environmental science and other areas
where space-time behaviour is a major focus of in-
vestigation, it is common to have many attributes in
the data collection whose values change with space
and time. Thus it is desirable to have a ‘space-time-
stamp’ for these. One way to approach the mining
of such data collections is to extend out from tra-
ditional data mining techniques, considering space
and time simply as three (or four) additional dimen-
sions to the n-dimensional data mining operations.
Because attribute values tend to be highly correlated
in space-time, the computational impact of these
additional dimensions can be mitigated by clever
choice of when to treat the attributes as dependent
(with respect to their space-time separation).

Spatio-temporal problems that involve a relatively
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Figure 1: Framework overview.

small number of variables (attributes) have been the
focus of physical and mathematical modelling for
many hundreds of years under the rubric of (what
has become) Dynamical Systems Theory (DST).
Therefore a second approach to spatio-temporal
data mining is to consider the spatio-temporal be-
haviour as primary, and look at ways of incorporat-
ing many variables (attributes) in DST type models.

DST provides a powerful tool, known as delay-
embedding, for reconstructing the dynamical be-
haviour of a system from data as long as the system
is deterministic and the complexity not too great.
Recently, advances in this area have provided a rig-
orous foundation for reconstructing systems which
are non-autonomous, that is ones that are forced (or
driven) by stochastic or deterministic signals (e.g.
noise). This is significant because it provides a way
to treat higher dimensional systems in a modular
fashion: as consisting of mutually forced subsys-
tems. The framework we present here is based on
this theoretical advance, which we explain in detail
in the next section.

2.2 The Framework

Having motivated the style of approach at least par-
tially, we present the essential components and ar-
chitecture of the framework in Figure 1.2 The
Individual-Based Model (IBM) denotes some kind
of complex system model; it will usually comprise a
large number of interacting parts which update over
time according to domain specific rules. The obser-
vation function approximates one or more spatially
continuous variables from the output of the IBM and
the real world data. Although complex systems are
by definition high-dimensional, it is very often the
case that their dynamical behaviour can be captured
remarkably well in a much smaller number of new
2The complete framework includes a mechanism not shown in
Figure 1 which provides a second level of feedback that is local
rather than global. For details see Campbell et al. [2005].



dimensions, as long as those new dimensions are
well chosen3. This principle is exploited to great
effect by the theory of delay-embedding, and this
underpins the global analysis end of the framework.
Each of these components will be described in more
detail below, but first we describe the flow around
the diagram in Figure 1.

The real-world data provides a set of initial condi-
tions to the IBM - one for every temporal ‘snap-
shot’ - which together we term control conditions.
The IBM uses these control conditions as reference
points, and to guide preliminary calibration of rules.
The values of the components of the IBM over a
‘run’ of the model are a spatio-temporal data series
themselves, ones which are usually of higher tem-
poral (and possibly spatial) resolution than the em-
pirical data. These two spatio-temporal data series,
one real, one synthetic, are then both ‘observed’. In
data mining terms this can be thought of as play-
ing an attribute-selection role where it may be nec-
essary to construct a new attribute from the exist-
ing ones. Once a particular continuous variable has
been obtained from the IBM and another for the
real-world data according to the same observation
function, they are both delay-embedded. The way
in which this transforms an observation is subtle, but
the upshot is it allows the comparison of the global
behaviour of the real world data and the IBM in a
space optimised for its ability to present the relevant
dynamics in a smaller number of dimensions4.

Because the IBMs’ data series is of higher temporal
resolution, the many space-time locations for which
there is no empirical equivalent act as unknowns.
Therefore there are potentially many ways (hypo-
thetical scenarios) for the IBM data series to be dif-
ferent (due to different rules or a different model
completely) and yet in ‘agreement’ with the empir-
ical data. In embedding space these unknowns de-
scribe volumes - rather than the trajectories of ob-
served data - and these may be bounded by (space-
time) proximity to known observations and/or ex-
pert knowledge. The volumes represent ‘potential
trajectories’: potential behaviours of the system.
‘Agreement’ requires that all synthetic data trajec-
tories are coincident with the empirical ones, and
within any volumes. The differences between the
IBM and the empirical data in embedding space are
used firstly to align (calibrate) the IBM with the em-
pirical data, and then to explore hypotheses consis-
tent with it. This is an iterative process.
3That is, they describe a good basis.
4There is a price to pay for this optimality: the delay-embedding
space is without physical meaning. However, as we are using it to
relate one embedded system to another, rather than in an absolute
sense, this is not an issue.

Delay-Embedding. Also known as geometry
from a time series, this mathematical fact provides
a deep theoretical foundation for the analysis of
time series generated by nonlinear deterministic dy-
namical systems. The profound insight of embed-
ding is that an accessible variable can explicitly
retrieve unseen internal degrees of freedom (Ger-
shenfeld [1999]). In fact, under reasonable techni-
cal conditions it allows reconstruction of the entire
phase space behaviour from a single scalar observ-
able. Phase space is the collection of possible states
(e.g. attributes) of the system that specify the sys-
tem completely - they all we need to know to have
complete knowledge of the immediate future.

As well as the phase space, which we denote M ,
a deterministic dynamical system is characterised
by an update rule, f , which defines how the system
changes over time. The rule dictates the new point
in phase space, x ∈ M , of the system, given the
current point (or state). The next state defined as a
function of the current one is known as an image. A
rule must have a single value for each point (state)
in phase space, but there could be several different
states that give rise to the same image. In discrete
time, we have

xi+1 = f(xi). (1)

which traces out a trajectory in phase space over
time. Thus the temporal behaviour is geometrised
- it becomes a static, but potentially complicated,
geometrical object. Crucially, this geometry is
unique to the dynamical behaviour, it is invariant
to changes in the way the system is analysed. The
general idea is that it is possible to reconstruct the
phase-space and dynamical behaviour (trajectories
in phase space), by considering delayed versions of
a single scalar observable. The delays form a new
space known as an embedding space, defined by the
embedding map Φ. See Figure 6 for an example.

Takens’ theorem (Takens [1981]) states that almost
every smooth map Φ : M → Rd, d ≥ 2m + 1,
is such an embedding, where m is the dimension
of the phase space. Because d ≥ 2m + 1 is a
sufficient condition, an embedding may be possi-
ble for m < d ≤ 2m. This is a remarkable re-
sult, however the assumptions that the system is de-
terministic, i.e. it has no random aspect, and au-
tonomous, i.e. it is not ‘driven’ or ‘forced’ by any
external events, are not justified for many real world
applications. This is particularly true for the bio-
logical and environmental sciences, where a purely
deterministic approach could justifiably be consid-
ered foolhardy. Therefore it is significant that there
has been a number of generalisations of the the-



ory along these lines. A method for reconstructing
input-output systems was conjectured in Casdagli
[1992] and subsequently proved by Stark and col-
leagues (Stark [1999]). They present a number of
forced embedding theorems, including the case of
stochastic forcing (Stark et al. [2003]). This leads
to models of the form

xi+1 = f(xi, ωi) (2)

where x ∈ M is a point in the state space and ω ∈
Σ is a stochastic forcing term. This dramatically
increases the degree to which real world data can be
considered from a formal basis.

In particular, it has led to (and in fact was partially
motivated by) the case of spatially extensive sys-
tems. The basic idea, presented in Orstavik and
Stark [1998], is that a spatially extended system can
be modelled as a number of local spatial subsystems
weakly coupled to, and driven by, the ‘noise’ at their
boundaries. In other words M is a local spatial re-
gion, and it forms the part of the whole system from
which we can take observables. Therefore our de-
lays may also have a spatial component - this corre-
sponds to recording values of neighbours. The forc-
ing by the rest of the lattice is modelled similarly
to the standard forced system above, except that the
update of the forcing is now itself dependent on x.
This means that it is no longer possible to have an
embedding in the rigorous, technical sense of the
word. However, because the effect M has on the
forcing dynamics is generally small, Orstavik and
Stark felt that the delay embedding technique still
provides the correct intuition. This is supported by
experimental results in their paper, and in a num-
ber of other studies before and since; in fact it goes
a long way to explaining the otherwise ‘surprising’
success of reconstruction techniques in such situa-
tions. The consequence of all this is a unified frame-
work for dealing with high-dimensional dynamical
systems, that has a holistic treatment of space-time.
We have omitted many details, and direct the inter-
ested reader to the seminal papers mentioned.

Individual-based Modelling. This term is used
here to encompass agent-based models, as well as
cellular automata and other connectionist models.
They all model spatially distributed individuals (or
objects), and in the case of agent based systems,
model them as decision makers with traits that in-
teract and evolve in time. They are representative of
the bottom-up approach to complex systems mod-
elling - program the details and the macroscopic
patterns will emerge. Thus they are ideal for for
inputting domain knowledge and exploring hypo-
thetical scenarios. A major goal of this work is to

provide a global spatio-temporal representation of
these knowledge rich models which captures the es-
sentials of their dynamical behaviour. As the delay-
embedding space is not scale dependent, this will
facilitate transfer of knowledge.

The Observation Function. Because IBMs
are typically discrete state models, and delay-
embedding is only theoretically well defined for
continuous state systems, we need to obtain this
continuous variable somehow. This will be problem
dependent, and because of universality of the delay-
embedding approach (any variable can be used)
there is a certain amount of freedom in the way
it is done. However, this generally consists of the
following steps: identifying the target physical vari-
able; considering the most appropriate continuous
version of it; and constructing an approximation to
this (possibly hypothetical) continuous variable. A
rigorous formulation of this device may be possible
through measure theory, however at this stage we
will rely on the approximations above, and leave
examination of this issue for future work.

3 APPLICATION: TRANSIT-ORIENTED DE-
VELOPMENTS

Transit Oriented Developments (TODs) (Gilbert
and Ginn [2001]) are one proposed solution to the
problems of urban sprawl, air-pollution, traffic con-
gestion and many others that characterise most large
cities. The basic principle of a TOD is a mixed-use
community within an average walking distance of
a transit stop core commercial area. Given relevant
data, and some domain knowledge, a mathematical
model that explores this concept can be extremely
useful. This research seeks to build and train a
model with a transparent architecture that can be
used to better understand existing transit-centric ur-
ban patterns in space and time, and simultaneously
to explore TOD scenarios in a virtual sense using
this knowledge. The simultaneity will be achieved
using FDPD to provide a feedback loop between
the data-driven modelling and the hypothesis explo-
ration. In this paper however, we simply concentrate
on a phase-space reconstruction of a simple varia-
tion of the empirical data. The goal is to look for
evidence of relatively low-dimensional behaviour;
this is discussed more in Section 3.4.

3.1 Data

The data consists of the number of dwellings in geo-
spatial regions known as Census Districts (CDs)



Figure 2: CD Boundaries (P.I.F.U. [2005]).
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Figure 3: Aggregate statistics for Albion.

within a one-kilometre radius of train stations in the
city of Brisbane, Australia. As this is a feasibility
study of the method of analysis, rather than a study
of the phenomena, this can be accomplished using
data pertaining to one train station only. Figure 2
shows the one-kilometre radius around Albion train
station. The number of dwelling approvals is avail-
able for each CD per quarter from September 1996
to June 2005, giving 36 temporal data points. Spa-
tially there are 22 distinct CDs. Aggregate statistics
(across all CDs) are in Figure 3.

3.2 Individual Based Model

The model we have created here is simply a higher
spatial resolution version of the empirical data. The
region surrounding the train stations was tesselated
into a grid of 256 ∗ 256 cells, such that the number
of cells in the most densely populated CD was just
greater than the number of dwellings. Cells were
then initialised as being a dwelling or not proba-
bilistically, such that in the limit of infinite sized
regions, the absolute number of dwellings in that
CD is equal to the empirical data. Rather than

Figure 4: Starting con-
figuration for the IBM.

Figure 5: Spatially con-
tinuous dwelling density.

knowledge-based transition rules, this initialisation
is then carried out again for each successive em-
pirical time-series record. Figure 4 shows a spatial
snapshot for the first time-series record.

3.3 Observation Function

The first thing we have to do is define our target vari-
able. Here we will use dwelling spatial density, as
this can be defined everywhere (it is continuous in
space and time) and we have strongly relevant em-
pirical support for this from which to construct the
observable. An approximation to the dwelling den-
sity is found by counting the number of dwellings
within a region of a certain number of cells, sur-
rounding the centroid cell at which the observable is
being estimated, and dividing by the total number of
cells in that region. This acts like a smoothing oper-
ation. In the results below, a 27∗27 = 729 region of
cells was used. The size of the region roughly corre-
sponds to the degree of spatial smoothing. Close to
the boundaries, densities were calculated by reduc-
ing the size of the region. The spatial delay, referred
to in the ‘delay-embedding’ part of section 2.2, was
taken only along one spatial dimension as the sys-
tem is rotationally symmetric with respect to dis-
tance from a train station. These distances were cal-
culated all over the grid (including from other train
stations than Albion) and spatial delays were always
taken in the direction of greatest distance. The spa-
tial delay in the results below was 5 cells.

3.4 Results and Discussion

Figure 6a displays an embedding space for mea-
surements taken at every spatial location, Figure
6b for only a single site. The vertical axis cor-
responds to measurements with one temporal lag
(three months), the two horizontal axes correspond
to measurements ‘now’ and ‘now’ with one spatial
lag (5 pixels) respectively from left to right. Ac-
cording to Taken’s theorem, if a sufficient number



(a) Whole system (b) Single site

Figure 6: Embedding spaces

of delays are used, the points should lie on a sur-
face in embedding space, otherwise they will fall in
a volume. High dimensional and/or noisy systems
will have points evenly distributed in that volume;
systems for which the number of delays is insuffi-
cient to fully ‘unfold’ the attractor, but which still
have relatively low-dimensional signals will have
a large amount of structure present in the volume.
In Figure 6a, different colours represent different
‘blocks’ of measurements; a similar colour indi-
cates close proximity in space and/or time and high-
lights the amount of structure present in the embed-
ding. Obviously 3 delays are insufficient to embed
the system, but the shape of the cloud of points is
strongly suggestive of structure in low-dimensional
deterministic signals. The only reason for the 3 de-
lay limitation here is visualisation, the quantitative
components of the framework are not so limited.

A second general feature of the cloud of points is
it hugs the x = y = z axis. This is usually a sign
that the size of the delay should be increased, how-
ever the inadequacy of 3 dimensions for the em-
bedding is more fundamental. Currently, work on
the CWM component of the framework is determin-
ing the number of dimensions required to fully un-
fold most of the dynamics of the system. In terms
of domain-relevant features, there is an interest-
ing asymmetry between spatio-temporal behaviour
below about 0.5 dwellings per cell and above it.
There is also quite anomalous spatio-temporal be-
haviour for two small ranges of density represented
by the two lobes protruding from above and be-
low the main cloud. Identifying such characteristics
can then guide creation of IBMs with higher spatio-
temporal resolution, which is work in progress.

4 CONCLUSION AND FUTURE WORK

We have presented Forced Dynamical Pattern Dis-
covery as a framework for spatial data analysis and
hypothesis exploration. We have shown how the
framework can be applied to a real world problem
and given some preliminary results for the phase-
space reconstruction component. The strong signal
of low-dimensional structure is promising. Future
work will focus mainly on two aspects: exploring

a measure theoretic version of the measuring de-
vice, and more sophisticated individual-based mod-
elling. Systematising interpretation of shapes and
features in embedding space will also be investi-
gated. Implementation-wise, there is the issue of
computational complexity, which is currently be-
ing addressed by use of a graphics processing unit
(GPU) for the simulations. We will move more
computation to the GPU, and further exploit its vi-
sualisation capabilities.
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