7,769 research outputs found

    Solving Constraints on the Intermediate Result of Decimal Floating-Point Operations

    Full text link
    The draft revision of the IEEE Standard for Floating-Point Arithmetic (IEEE P754) includes a definition for dec-imal floating-point (FP) in addition to the widely used bi-nary FP specification. The decimal standard raises new concerns with regard to the verification of hardware- and software-based designs. The verification process normally emphasizes intricate cor-ner cases and uncommon events. The decimal format intro-duces several new classes of such events in addition to those characteristic of binary FP. Our work addresses the following problem: Given a dec-imal floating-point operation, a constraint on the interme-diate result, and a constraint on the representation selected for the result, find random inputs for the operation that yield an intermediate result compatible with these specifications. The paper supplies efficient analytic solutions for addi-tion and for some cases of multiplication and division. We provide probabilistic algorithms for the remaining cases. These algorithms prove to be efficient in the actual imple-mentation.

    IVOA Recommendation: VOTable Format Definition Version 1.3

    Full text link
    This document describes the structures making up the VOTable standard. The main part of this document describes the adopted part of the VOTable standard; it is followed by appendices presenting extensions which have been proposed and/or discussed, but which are not part of the standard

    Interpretive computer simulator for the NASA Standard Spacecraft Computer-2 (NSSC-2)

    Get PDF
    An Interpretive Computer Simulator (ICS) for the NASA Standard Spacecraft Computer-II (NSSC-II) was developed as a code verification and testing tool for the Annular Suspension and Pointing System (ASPS) project. The simulator is written in the higher level language PASCAL and implented on the CDC CYBER series computer system. It is supported by a metal assembler, a linkage loader for the NSSC-II, and a utility library to meet the application requirements. The architectural design of the NSSC-II is that of an IBM System/360 (S/360) and supports all but four instructions of the S/360 standard instruction set. The structural design of the ICS is described with emphasis on the design differences between it and the NSSC-II hardware. The program flow is diagrammed, with the function of each procedure being defined; the instruction implementation is discussed in broad terms; and the instruction timings used in the ICS are listed. An example of the steps required to process an assembly level language program on the ICS is included. The example illustrates the control cards necessary to assemble, load, and execute assembly language code; the sample program to to be executed; the executable load module produced by the loader; and the resulting output produced by the ICS

    FpSynt: a fixed-point datapath synthesis tool for embedded systems

    Full text link
    Digital mobile systems must function with low power, small size and weight, and low cost. High-performance desktop microprocessors, with built-in floating point hardware, are not suitable in these cases. For embedded systems, it can be advantageous to implement these calculations with fixed point arithmetic instead. We present an automated fixed-point data path synthesis tool FpSynt for designing embedded applications in fixed-point domain with sufficient accuracy for most applications. FpSynt is available under the GNU General Public License from the following GitHub repository: http://github.com/izhbannikov/FPSYN

    A self-study course in FORTRAN programming. Volume 1 - Textbook

    Get PDF
    Self study textbook for course in FORTRAN programming - Vol.

    Development of the analog ASIC for multi-channel readout X-ray CCD camera

    Full text link
    We report on the performance of an analog application-specific integrated circuit (ASIC) developed aiming for the front-end electronics of the X-ray CCDcamera system onboard the next X-ray astronomical satellite, ASTRO-H. It has four identical channels that simultaneously process the CCD signals. Distinctive capability of analog-to-digital conversion enables us to construct a CCD camera body that outputs only digital signals. As the result of the front-end electronics test, it works properly with low input noise of =<30 uV at the pixel rate below 100 kHz. The power consumption is sufficiently low of about 150 mW/chip. The input signal range of 720 mV covers the effective energy range of the typical X-ray photon counting CCD (up to 20 keV). The integrated non-linearity is 0.2% that is similar as those of the conventional CCDs in orbit. We also performed a radiation tolerance test against the total ionizing dose (TID) effect and the single event effect. The irradiation test using 60Co and proton beam showed that the ASIC has the sufficient tolerance against TID up to 200 krad, which absolutely exceeds the expected amount of dose during the period of operating in a low-inclination low-earth orbit. The irradiation of Fe ions with the fluence of 5.2x10^8 Ion/cm2 resulted in no single event latchup (SEL), although there were some possible single event upsets. The threshold against SEL is higher than 1.68 MeV cm^2/mg, which is sufficiently high enough that the SEL event should not be one of major causes of instrument downtime in orbit.Comment: 16 pages, 6 figure
    • …
    corecore