3,363 research outputs found

    A software-defined architecture for next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are undergoing fundamental changes and many established concepts are being revisited. New emerging paradigms, such as Software-Defined Networking (SDN), Mobile Cloud Computing (MCC), Network Function Virtualization (NFV), Internet of Things (IoT),and Mobile Social Networking (MSN), bring challenges in the design of cellular networks architectures. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a scalable and efficient way. In this paper, first we discuss the limitations of the current LTE architecture. Second, driven by the new communication needs and by the advances in aforementioned areas, we propose a new architecture for next generation cellular networks. Some of its characteristics include support for distributed content routing, Heterogeneous Networks(HetNets) and multiple Radio Access Technologies (RATs). Finally, we present simulation results which show that significant backhaul traffic savings can be achieved by implementing caching and routing functions at the network edge

    Resource Management in a Peer to Peer Cloud Network for IoT

    Get PDF
    Software-Defined Internet of Things (SDIoT) is defined as merging heterogeneous objects in a form of interaction among physical and virtual entities. Large scale of data centers, heterogeneity issues and their interconnections have made the resource management a hard problem specially when there are different actors in cloud system with different needs. Resource management is a vital requirement to achieve robust networks specially with facing continuously increasing amount of heterogeneous resources and devices to the network. The goal of this paper is reviews to address IoT resource management issues in cloud computing services. We discuss the bottlenecks of cloud networks for IoT services such as mobility. We review Fog computing in IoT services to solve some of these issues. It provides a comprehensive literature review of around one hundred studies on resource management in Peer to Peer Cloud Networks and IoT. It is very important to find a robust design to efficiently manage and provision requests and available resources. We also reviewed different search methodologies to help clients find proper resources to answer their needs

    Lamred : location-aware and privacy preserving multi-layer resource discovery for IoT

    Get PDF
    The resources in the Internet of Things (IoT) network are distributed among different parts of the network. Considering huge number of IoT resources, the task of discovering them is challenging. While registering them in a centralized server such as a cloud data center is one possible solution, but due to billions of IoT resources and their limited computation power, the centralized approach leads to some efficiency and security issues. In this paper we proposed a location aware and decentralized multi layer model of resource discovery (LaMRD) in IoT. It allows a resource to be registered publicly or privately, and to be discovered in a decentralized scheme in the IoT network. LaMRD is based on structured peer-to-peer (p2p) scheme and follows the general system trend of fog computing. Our proposed model utilizes Distributed Hash Table (DHT) technology to create a p2p scheme of communication among fog nodes. The resources are registered in LaMRD based on their locations which results in a low added overhead in the registration and discovery processes. LaMRD generates a single overlay and it can be generated without specific organizing entity or location based devices. LaMRD guarantees some important security properties and it showed a lower latency comparing to the cloud based and decentralized resource discovery
    • …
    corecore