3,091 research outputs found

    Review of blockchain-based distributed energy: Implications for institutional development

    Get PDF
    The future of energy is complex, with fluctuating renewable resources in increasingly distributed systems. It is suggested that blockchain technology is a timely innovation with potential to facilitate this future. Peer-to-peer (P2P) microgrids can support renewable energy as well as economically empower consumers and prosumers. However, the rapid development of blockchain and prospects for P2P energy networks is coupled with several grey areas in the institutional landscape. The purpose of this paper is to holistically explore potential challenges of blockchain-based P2P microgrids, and propose practical implications for institutional development as well as academia. An analytical framework for P2P microgrids is developed based on literature review as well as expert interviews. The framework incorporates 1) Technological, 2) Economic, 3) Social, 4) Environmental and 5) Institutional dimensions. Directions for future work in practical and academic contexts are identified. It is suggested that bridging the gap from technological to institutional readiness would require the incorporation of all dimensions as well as their inter-relatedness. Gradual institutional change leveraging community-building and regulatory sandbox approaches are proposed as potential pathways in incorporating this multi-dimensionality, reducing cross-sectoral silos, and facilitating interoperability between current and future systems. By offering insight through holistic conceptualization, this paper aims to contribute to expanding research in building the pillars of a more substantiated institutional arch for blockchain in the energy sector

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach

    An Overview of Demand Response : From its Origins to the Smart Energy Community

    Get PDF
    The need to improve power system performance, enhance reliability, and reduce environmental effects, as well as advances in communication infrastructures, have led to demand response (DR) becoming an essential part of smart grid operation. DR can provide power system operators with a range of flexible resources through different schemes. From the operational decision-making viewpoint, in practice, each scheme can affect the system performance differently. Therefore, categorizing different DR schemes based on their potential impacts on the power grid, operational targets, and economic incentives can embed a pragmatic and practical perspective into the selection approach. In order to provide such insights, this paper presents an extensive review of DR programs. A goal-oriented classification based on the type of market, reliability, power flexibility and the participants’ economic motivation is proposed for DR programs. The benefits and barriers based on new classes are presented. Every involved party, including the power system operator and participants, can utilize the proposed classification to select an appropriate plan in the DR-related ancillary service ecosystem. The various enabling technologies and practical strategies for the application of DR schemes in various sectors are reviewed. Following this, changes in the procedure of DR schemes in the smart community concept are studied. Finally, the direction of future research and development in DR is discussed and analyzed.© 2021 IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.fi=vertaisarvioitu|en=peerReviewed

    Prosumer communities and relationships in smart grids: A literature review, evolution and future directions

    Get PDF
    Smart grids are robust, self-healing networks that allow bidirectional propagation of energy and information within the utility grid. This introduces a new type of energy user who consumes, produces, stores and shares energy with other grid users. Such a user is called a "prosumer." Prosumers' participation in the smart grid is critical for the sustainability and long-term efficiency of the energy sharing process. Thus, prosumer management has attracted increasing attention among researchers in recent years. This paper systematically examines the literature on prosumer community based smart grid by reviewing relevant literature published from 2009 to 2018 in reputed energy and technology journals. We specifically focus on two dimensions namely prosumer community groups and prosumer relationships. Based on the evaluated literature, we present eight propositions and thoroughly describe several future research directions

    End-User Flexibility in the Local Electricity Grid – Blurring the Vertical Separation of Market and Monopoly?

    Get PDF
    In the Norwegian electricity system, new consumption patterns and changing load profiles increase an already apparent need for reinvestment in the aging network infrastructure. This is very costly, and network operators consider alternative ways of increasing capacity, which are less costly and more flexible. One such option is end-user flexibility. In the paper, we give an overview of the Norwegian electricity market and regulation and the potential of end-user flexibility. We present an investment case provided by a network company, which illustrates that the choice of compensation method to customers have a large impact on the cost and/or revenue cap in the regulatory model. By issuing direct payments for flexibility services, end-user flexibility results in a lower efficiency, although the revenue cap may be higher, while redistribution of network tariffs have a marginal effect on efficiency and the revenue cap. Through redistribution of network tariffs, the network operator can defer investments without a notable change in the revenue cap or change in efficiency. This highlights some of the future challenges that the regulator faces in setting a regulatory framework for end-user flexibility and it challenges the vertical separation that has been a corner stone in the deregulated electricity market
    corecore