22,950 research outputs found

    DEVELOPMENT OF AN IMPROVED DATABASE FOR YORUBA HANDWRITTEN CHARACTER

    Get PDF
    For improved human comprehension and autonomous machine perception, optical character recognition has been saddled with the task of translating printed or hand-written materials into digital text files. Many works have been proposed and implemented in the computerization of different human languages in the global community, but microscopic attempts have also been made to place Yoruba Handwritten Character on the board of Optical Character Recognition. This study developed a novel available dataset for research on offline Yoruba handwritten character recognition so as to fill the gaps in the existing knowledge. The developed database contains a total of 12,600 characters being made up of 70 classes from a total number of 200 writers, in which 80 % (10,500) is regarded as the training and validation dataset while the remaining 20 % (2,100) is regarded as testing dataset. The dataset is available on https://github.com/oluwashina90/Yoruba-handwritten-character-database. Hence, it is the complete and largest dataset available for Yoruba Handwritten character research

    Arabic Printed Word Recognition Using Windowed Bernoulli HMMs

    Full text link
    [EN] Hidden Markov Models (HMMs) are now widely used for off-line text recognition in many languages and, in particular, Arabic. In previous work, we proposed to directly use columns of raw, binary image pixels, which are directly fed into embedded Bernoulli (mixture) HMMs, that is, embedded HMMs in which the emission probabilities are modeled with Bernoulli mixtures. The idea was to by-pass feature extraction and to ensure that no discriminative information is filtered out during feature extraction, which in some sense is integrated into the recognition model. More recently, we extended the column bit vectors by means of a sliding window of adequate width to better capture image context at each horizontal position of the word image. However, these models might have limited capability to properly model vertical image distortions. In this paper, we have considered three methods of window repositioning after window extraction to overcome this limitation. Each sliding window is translated (repositioned) to align its center to the center of mass. Using this approach, state-of-art results are reported on the Arabic Printed Text Recognition (APTI) database.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 287755. Also supported by the Spanish Government (Plan E, iTrans2 TIN2009-14511 and AECID 2011/2012 grant).Alkhoury, I.; Giménez Pastor, A.; Juan Císcar, A.; Andrés Ferrer, J. (2013). Arabic Printed Word Recognition Using Windowed Bernoulli HMMs. Lecture Notes in Computer Science. 8156:330-339. https://doi.org/10.1007/978-3-642-41181-6_34S3303398156Dehghan, M., et al.: Handwritten Farsi (Arabic) word recognition: a holistic approach using discrete HMM. Pattern Recognition 34(5), 1057–1065 (2001), http://www.sciencedirect.com/science/article/pii/S0031320300000510Giménez, A., Juan, A.: Embedded Bernoulli Mixture HMMs for Handwritten Word Recognition. In: ICDAR 2009, Barcelona, Spain, pp. 896–900 (July 2009)Giménez, A., Khoury, I., Juan, A.: Windowed Bernoulli Mixture HMMs for Arabic Handwritten Word Recognition. In: ICFHR 2010, Kolkata, India, pp. 533–538 (November 2010)Grosicki, E., El Abed, H.: ICDAR 2009 Handwriting Recognition Competition. In: ICDAR 2009, Barcelona, Spain, pp. 1398–1402 (July 2009)Günter, S., et al.: HMM-based handwritten word recognition: on the optimization of the number of states, training iterations and Gaussian components. Pattern Recognition 37, 2069–2079 (2004)Märgner, V., El Abed, H.: ICDAR 2007 - Arabic Handwriting Recognition Competition. In: ICDAR 2007, Curitiba, Brazil, pp. 1274–1278 (September 2007)Märgner, V., El Abed, H.: ICDAR 2009 Arabic Handwriting Recognition Competition. In: ICDAR 2009, Barcelona, Spain, pp. 1383–1387 (July 2009)Pechwitz, M., et al.: IFN/ENIT - database of handwritten Arabic words. In: CIFED 2002, Hammamet, Tunis, pp. 21–23 (October 2002)Rabiner, L., Juang, B.: Fundamentals of speech recognition. Prentice-Hall (1993)Slimane, F., et al.: A new arabic printed text image database and evaluation protocols. In: ICDAR 2009, pp. 946–950 (July 2009)Slimane, F., et al.: ICDAR 2011 - arabic recognition competition: Multi-font multi-size digitally represented text. In: ICDAR 2011 - Arabic Recognition Competition, pp. 1449–1453. IEEE (September 2011)Young, S.: et al.: The HTK Book. Cambridge University Engineering Department (1995

    Handwritten number recognition

    Full text link
    The main focus of this research is to automate medical form processing. An important step in this process is separating handwriting from printed text characters. We developed a filtering technique that extracts handwritten text from the printed text in the form. Once the handwritten text is segregated, each line of the segregated text is identified. The identification step is followed by character segmentation. Statistical analysis is performed on the gaps between the characters in each line. This results in a binormal curve clearly depicting two regions indicating if the gap represents the spacing between characters within a word or between two words. Furthermore, an algorithm is employed for number recognition. We use different feature extraction algorithms and generate a high dimension feature vector. The algorithm is trained by giving training samples; a rule is generated to classify an input. A rule database is created in order classify the characters given during testing phase. By this method, there is no need to correlate the observed number with the pre-stored characteristics of numbers, instead we test the given number whether it satisfies the appropriate rule

    Component-based Segmentation of words from handwritten Arabic text

    Get PDF
    Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition

    Curriculum Learning for Handwritten Text Line Recognition

    Full text link
    Recurrent Neural Networks (RNN) have recently achieved the best performance in off-line Handwriting Text Recognition. At the same time, learning RNN by gradient descent leads to slow convergence, and training times are particularly long when the training database consists of full lines of text. In this paper, we propose an easy way to accelerate stochastic gradient descent in this set-up, and in the general context of learning to recognize sequences. The principle is called Curriculum Learning, or shaping. The idea is to first learn to recognize short sequences before training on all available training sequences. Experiments on three different handwritten text databases (Rimes, IAM, OpenHaRT) show that a simple implementation of this strategy can significantly speed up the training of RNN for Text Recognition, and even significantly improve performance in some cases
    • …
    corecore