11 research outputs found

    Aggregation signature for small object tracking

    Get PDF
    Small object tracking becomes an increasingly important task, which however has been largely unexplored in computer vision. The great challenges stem from the facts that: 1) small objects show extreme vague and variable appearances, and 2) they tend to be lost easier as compared to normal-sized ones due to the shaking of lens. In this paper, we propose a novel aggregation signature suitable for small object tracking, especially aiming for the challenge of sudden and large drift. We make three-fold contributions in this work. First, technically, we propose a new descriptor, named aggregation signature, based on saliency, able to represent highly distinctive features for small objects. Second, theoretically, we prove that the proposed signature matches the foreground object more accurately with a high probability. Third, experimentally, the aggregation signature achieves a high performance on multiple datasets, outperforming the state-of-the-art methods by large margins. Moreover, we contribute with two newly collected benchmark datasets, i.e., small90 and small112, for visually small object tracking. The datasets will be available in https://github.com/bczhangbczhang/.Comment: IEEE Transactions on Image Processing, 201

    Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning

    Get PDF
    CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA © 2022 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-9157-3/22/04. https://doi.org/10.1145/3491102.3517522Model explanations such as saliency maps can improve user trust in AI by highlighting important features for a prediction. However, these become distorted and misleading when explaining predictions of images that are subject to systematic error (bias). Furthermore, the distortions persist despite model fine-tuning on images biased by different factors (blur, color temperature, day/night). We present Debiased-CAM to recover explanation faithfulness across various bias types and levels by training a multi-input, multi-task model with auxiliary tasks for explanation and bias level predictions. In simulation studies, the approach not only enhanced prediction accuracy, but also generated highly faithful explanations about these predictions as if the images were unbiased. In user studies, debiased explanations improved user task performance, perceived truthfulness and perceived helpfulness. Debiased training can provide a versatile platform for robust performance and explanation faithfulness for a wide range of applications with data biases.Peer ReviewedPostprint (published version

    Debiased-CAM for bias-agnostic faithful visual explanations of deep convolutional networks

    Get PDF
    Class activation maps (CAMs) explain convolutional neural network predictions by identifying salient pixels, but they become misaligned and misleading when explaining predictions on images under bias, such as images blurred accidentally or deliberately for privacy protection, or images with improper white balance. Despite model fine-tuning to improve prediction performance on these biased images, we demonstrate that CAM explanations become more deviated and unfaithful with increased image bias. We present Debiased-CAM to recover explanation faithfulness across various bias types and levels by training a multi-input, multi-task model with auxiliary tasks for CAM and bias level predictions. With CAM as a prediction task, explanations are made tunable by retraining the main model layers and made faithful by self-supervised learning from CAMs of unbiased images. The model provides representative, bias-agnostic CAM explanations about the predictions on biased images as if generated from their unbiased form. In four simulation studies with different biases and prediction tasks, Debiased-CAM improved both CAM faithfulness and task performance. We further conducted two controlled user studies to validate its truthfulness and helpfulness, respectively. Quantitative and qualitative analyses of participant responses confirmed Debiased-CAM as more truthful and helpful. Debiased-CAM thus provides a basis to generate more faithful and relevant explanations for a wide range of real-world applications with various sources of bias
    corecore