28,225 research outputs found

    Towards a Smarter organization for a Self-servicing Society

    Full text link
    Traditional social organizations such as those for the management of healthcare are the result of designs that matched well with an operational context considerably different from the one we are experiencing today. The new context reveals all the fragility of our societies. In this paper, a platform is introduced by combining social-oriented communities and complex-event processing concepts: SELFSERV. Its aim is to complement the "old recipes" with smarter forms of social organization based on the self-service paradigm and by exploring culture-specific aspects and technological challenges.Comment: Final version of a paper published in the Proceedings of International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI'16), special track on Emergent Technologies for Ambient Assisted Living (ETAAL

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Mobile Edge Computing Empowers Internet of Things

    Full text link
    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods are validated via extensive simulations

    Towards cost-efficient prospection and 3D visualization of underwater structures using compact ROVs

    Get PDF
    The deployment of Remotely Operated Vehicles (ROV) for underwater prospection and 3D visualization has grown significantly in civil applications for a few decades. The demand for a wide range of optical and physical parameters of underwater environments is explained by an increasing complexity of the monitoring requirements of these environments. The prospection of engineering constructions (e.g. quay walls or enclosure doors) and underwater heritage (e.g. wrecks or sunken structures) heavily relies on ROV systems. Furthermore, ROVs offer a very flexible platform to measure the chemical content of the water. The biggest bottleneck of currently available ROVs is the cost of the systems. This constrains the availability of ROVs to a limited number of companies and institutes. Fortunately, as with the recent introduction of cost-efficient Unmanned Aerial Vehicles on the consumer market, a parallel development is expected for ROVs. The ability to participate in this new field of expertise by building Do It Yourself (DIY) kits and by adapting and adding on-demand features to the platform will increase the range of this new technology. In this paper, the construction of a DIY OpenROV kit and its implementation in bathymetric research projects are elaborated. The original platform contains a modified webcam for visual underwater prospection and a Micro ElectroMechanical System (MEMS) based depth sensor, allowing relative positioning. However, the performance of the standard camera is limited and an absolute positioning system is absent. It is expected that 3D visualizations with conventional photogrammetric qualities are limited with the current system. Therefore, modifications to improve the standard platform are foreseen, allowing the development of a cost-efficient underwater platform. Preliminary results and expectations on these challenges are reported in this paper
    corecore