1,830 research outputs found

    Private reputation retrieval in public - a privacy-aware announcement scheme for VANETs

    Get PDF
    An announcement scheme is a system that facilitates vehicles to broadcast road-related information in vehicular ad hoc networks (VANETs) in order to improve road safety and efficiency. Here, the authors propose a new cryptographic primitive for public updating of reputation score based on the Boneh–Boyen–Shacham short group signature scheme. This allows private reputation score retrieval without a secure channel. Using this, the authors devise a privacy-aware announcement scheme using reputation systems which is reliable, auditable, and robust

    Performance evaluation of a cooperative reputation system for vehicular delay-tolerant networks

    Get PDF
    In the last decade, both scientific community and automotive industry enabled communications among vehicles in different kinds of scenarios proposing different vehicular architectures. Vehicular delay-tolerant networks (VDTNs) were proposed as a solution to overcome some of the issues found in other vehicular architectures, namely, in dispersed regions and emergency scenarios. Most of these issues arise from the unique characteristics of vehicular networks. Contrary to delay-tolerant networks (DTNs), VDTNs place the bundle layer under the network layer in order to simplify the layered architecture and enable communications in sparse regions characterized by long propagation delays, high error rates, and short contact durations. However, such characteristics turn contacts very important in order to exchange as much information as possible between nodes at every contact opportunity. One way to accomplish this goal is to enforce cooperation between network nodes. To promote cooperation among nodes, it is important that nodes share their own resources to deliver messages from others. This can be a very difficult task, if selfish nodes affect the performance of cooperative nodes. This paper studies the performance of a cooperative reputation system that detects, identify, and avoid communications with selfish nodes. Two scenarios were considered across all the experiments enforcing three different routing protocols (First Contact, Spray and Wait, and GeoSpray). For both scenarios, it was shown that reputation mechanisms that punish aggressively selfish nodes contribute to increase the overall network performance

    Sporadic cloud-based mobile augmentation on the top of a virtualization layer: a case study of collaborative downloads in VANETs

    Get PDF
    Current approaches to Cloud-based Mobile Augmentation (CMA) leverage (cloud-based) resources to meet the requirements of rich mobile applications, so that a terminal (the so-called application node or AppN) can borrow resources lent by a set of collaborator nodes (CNs). In the most sophisticated approaches proposed for vehicular scenarios, the collaborators are nearby vehicles that must remain together near the application node because the augmentation service is interrupted when they move apart. This leads to disruption in the execution of the applications and consequently impoverishes the mobile users’ experience. This paper describes a CMA approach that is able to restore the augmentation service transparently when AppNs and CNs separate. The functioning is illustrated by a NaaS model where the AppNs access web contents that are collaboratively downloaded by a set of CNs, exploiting both roadside units and opportunistic networking. The performance of the resulting approach has been evaluated via simulations, achieving promising results in terms of number of downloads, average download times, and network overheadMinisterio de Educación y Ciencia | Ref. TIN2017-87604-
    corecore