12,506 research outputs found

    Lung Segmentation from Chest X-rays using Variational Data Imputation

    Full text link
    Pulmonary opacification is the inflammation in the lungs caused by many respiratory ailments, including the novel corona virus disease 2019 (COVID-19). Chest X-rays (CXRs) with such opacifications render regions of lungs imperceptible, making it difficult to perform automated image analysis on them. In this work, we focus on segmenting lungs from such abnormal CXRs as part of a pipeline aimed at automated risk scoring of COVID-19 from CXRs. We treat the high opacity regions as missing data and present a modified CNN-based image segmentation network that utilizes a deep generative model for data imputation. We train this model on normal CXRs with extensive data augmentation and demonstrate the usefulness of this model to extend to cases with extreme abnormalities.Comment: Accepted to be presented at the first Workshop on the Art of Learning with Missing Values (Artemiss) hosted by the 37th International Conference on Machine Learning (ICML). Source code, training data and the trained models are available here: https://github.com/raghavian/lungVAE

    λ”₯λŸ¬λ‹ 기반 생성 λͺ¨λΈμ„ μ΄μš©ν•œ μžμ—°μ–΄μ²˜λ¦¬ 데이터 증강 기법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ³΅κ³ΌλŒ€ν•™ 컴퓨터곡학뢀,2020. 2. 이상ꡬ.Recent advances in generation capability of deep learning models have spurred interest in utilizing deep generative models for unsupervised generative data augmentation (GDA). Generative data augmentation aims to improve the performance of a downstream machine learning model by augmenting the original dataset with samples generated from a deep latent variable model. This data augmentation approach is attractive to the natural language processing community, because (1) there is a shortage of text augmentation techniques that require little supervision and (2) resource scarcity being prevalent. In this dissertation, we explore the feasibility of exploiting deep latent variable models for data augmentation on three NLP tasks: sentence classification, spoken language understanding (SLU) and dialogue state tracking (DST), represent NLP tasks of various complexities and properties -- SLU requires multi-task learning of text classification and sequence tagging, while DST requires the understanding of hierarchical and recurrent data structures. For each of the three tasks, we propose a task-specific latent variable model based on conditional, hierarchical and sequential variational autoencoders (VAE) for multi-modal joint modeling of linguistic features and the relevant annotations. We conduct extensive experiments to statistically justify our hypothesis that deep generative data augmentation is beneficial for all subject tasks. Our experiments show that deep generative data augmentation is effective for the select tasks, supporting the idea that the technique can potentially be utilized for other range of NLP tasks. Ablation and qualitative studies reveal deeper insight into the underlying mechanisms of generative data augmentation. As a secondary contribution, we also shed light onto the recurring posterior collapse phenomenon in autoregressive VAEs and, subsequently, propose novel techniques to reduce the model risk, which is crucial for proper training of complex VAE models, enabling them to synthesize better samples for data augmentation. In summary, this work intends to demonstrate and analyze the effectiveness of unsupervised generative data augmentation in NLP. Ultimately, our approach enables standardized adoption of generative data augmentation, which can be applied orthogonally to existing regularization techniques.졜근 λ”₯λŸ¬λ‹ 기반 생성 λͺ¨λΈμ˜ κΈ‰κ²©ν•œ λ°œμ „μœΌλ‘œ 이λ₯Ό μ΄μš©ν•œ 생성 기반 데이터 증강 기법(generative data augmentation, GDA)의 μ‹€ν˜„ κ°€λŠ₯성에 λŒ€ν•œ κΈ°λŒ€κ°€ 컀지고 μžˆλ‹€. 생성 기반 데이터 증강 기법은 λ”₯λŸ¬λ‹ 기반 μž μž¬λ³€μˆ˜ λͺ¨λΈμ—μ„œ 생성 된 μƒ˜ν”Œμ„ 원본 데이터셋에 μΆ”κ°€ν•˜μ—¬ μ—°κ΄€λœ νƒœμŠ€ν¬μ˜ μ„±λŠ₯을 ν–₯μƒμ‹œν‚€λŠ” κΈ°μˆ μ„ μ˜λ―Έν•œλ‹€. λ”°λΌμ„œ 생성 기반 데이터 증강 기법은 데이터 κ³΅κ°„μ—μ„œ μ΄λ€„μ§€λŠ” μ •κ·œν™” 기술의 ν•œ ν˜•νƒœλ‘œ 간주될 수 μžˆλ‹€. μ΄λŸ¬ν•œ λ”₯λŸ¬λ‹ 기반 생성 λͺ¨λΈμ˜ μƒˆλ‘œμš΄ ν™œμš© κ°€λŠ₯성은 μžμ—°μ–΄μ²˜λ¦¬ λΆ„μ•Όμ—μ„œ λ”μš± μ€‘μš”ν•˜κ²Œ λΆ€κ°λ˜λŠ” μ΄μœ λŠ” (1) λ²”μš© κ°€λŠ₯ν•œ ν…μŠ€νŠΈ 데이터 증강 기술의 λΆ€μž¬μ™€ (2) ν…μŠ€νŠΈ λ°μ΄ν„°μ˜ ν¬μ†Œμ„±μ„ 극볡할 수 μžˆλŠ” λŒ€μ•ˆμ΄ ν•„μš”ν•˜κΈ° λ•Œλ¬Έμ΄λ‹€. 문제의 λ³΅μž‘λ„μ™€ νŠΉμ§•μ„ 골고루 μ±„μ§‘ν•˜κΈ° μœ„ν•΄ λ³Έ λ…Όλ¬Έμ—μ„œλŠ” ν…μŠ€νŠΈ λΆ„λ₯˜(text classification), 순차적 λ ˆμ΄λΈ”λ§κ³Ό λ©€ν‹°νƒœμŠ€ν‚Ή 기술이 ν•„μš”ν•œ λ°œν™” 이해(spoken language understanding, SLU), 계측적이며 μž¬κ·€μ μΈ 데이터 ꡬ쑰에 λŒ€ν•œ κ³ λ €κ°€ ν•„μš”ν•œ λŒ€ν™” μƒνƒœ 좔적(dialogue state tracking, DST) λ“± μ„Έ 가지 λ¬Έμ œμ—μ„œ λ”₯λŸ¬λ‹ 기반 생성 λͺ¨λΈμ„ ν™œμš©ν•œ 데이터 증강 κΈ°λ²•μ˜ 타당성에 λŒ€ν•΄ 닀룬닀. λ³Έ μ—°κ΅¬μ—μ„œλŠ” 쑰건뢀, 계측적 및 순차적 variational autoencoder (VAE)에 κΈ°λ°˜ν•˜μ—¬ 각 μžμ—°μ–΄μ²˜λ¦¬ λ¬Έμ œμ— νŠΉν™”λœ ν…μŠ€νŠΈ 및 μ—°κ΄€ λΆ€μ°© 정보λ₯Ό λ™μ‹œμ— μƒμ„±ν•˜λŠ” 특수 λ”₯λŸ¬λ‹ 생성 λͺ¨λΈλ“€μ„ μ œμ‹œν•˜κ³ , λ‹€μ–‘ν•œ ν•˜λ₯˜ λͺ¨λΈκ³Ό 데이터셋을 λ‹€λ£¨λŠ” λ“± 폭 넓은 μ‹€ν—˜μ„ 톡해 λ”₯ 생성 λͺ¨λΈ 기반 데이터 증강 κΈ°λ²•μ˜ 효과λ₯Ό ν†΅κ³„μ μœΌλ‘œ μž…μ¦ν•˜μ˜€λ‹€. λΆ€μˆ˜μ  μ—°κ΅¬μ—μ„œλŠ” μžκΈ°νšŒκ·€μ (autoregressive) VAEμ—μ„œ 빈번히 λ°œμƒν•˜λŠ” posterior collapse λ¬Έμ œμ— λŒ€ν•΄ νƒκ΅¬ν•˜κ³ , ν•΄λ‹Ή 문제λ₯Ό μ™„ν™”ν•  수 μžˆλŠ” μ‹ κ·œ λ°©μ•ˆλ„ μ œμ•ˆν•œλ‹€. ν•΄λ‹Ή 방법을 생성적 데이터 증강에 ν•„μš”ν•œ λ³΅μž‘ν•œ VAE λͺ¨λΈμ— μ μš©ν•˜μ˜€μ„ λ•Œ, 생성 λͺ¨λΈμ˜ 생성 질이 ν–₯μƒλ˜μ–΄ 데이터 증강 νš¨κ³Όμ—λ„ 긍정적인 영ν–₯을 λ―ΈμΉ  수 μžˆμŒμ„ κ²€μ¦ν•˜μ˜€λ‹€. λ³Έ 논문을 톡해 μžμ—°μ–΄μ²˜λ¦¬ λΆ„μ•Όμ—μ„œ κΈ°μ‘΄ μ •κ·œν™” 기법과 병행 적용 κ°€λŠ₯ν•œ 비지도 ν˜•νƒœμ˜ 데이터 증강 κΈ°λ²•μ˜ ν‘œμ€€ν™”λ₯Ό κΈ°λŒ€ν•΄ λ³Ό 수 μžˆλ‹€.1 Introduction 1 1.1 Motivation 1 1.2 Dissertation Overview 6 2 Background and Related Work 8 2.1 Deep Latent Variable Models 8 2.1.1 Variational Autoencoder (VAE) 10 2.1.2 Deep Generative Models and Text Generation 12 2.2 Data Augmentation 12 2.2.1 General Description 13 2.2.2 Categorization of Data Augmentation 14 2.2.3 Theoretical Explanations 21 2.3 Summary 24 3 Basic Task: Text Classi cation 25 3.1 Introduction 25 3.2 Our Approach 28 3.2.1 Proposed Models 28 3.2.2 Training with I-VAE 29 3.3 Experiments 31 3.3.1 Datasets 32 3.3.2 Experimental Settings 33 3.3.3 Implementation Details 34 3.3.4 Data Augmentation Results 36 3.3.5 Ablation Studies 39 3.3.6 Qualitative Analysis 40 3.4 Summary 45 4 Multi-task Learning: Spoken Language Understanding 46 4.1 Introduction 46 4.2 Related Work 48 4.3 Model Description 48 4.3.1 Framework Formulation 48 4.3.2 Joint Generative Model 49 4.4 Experiments 56 4.4.1 Datasets 56 4.4.2 Experimental Settings 57 4.4.3 Generative Data Augmentation Results 61 4.4.4 Comparison to Other State-of-the-art Results 63 4.4.5 Ablation Studies 63 4.5 Summary 67 5 Complex Data: Dialogue State Tracking 68 5.1 Introduction 68 5.2 Background and Related Work 70 5.2.1 Task-oriented Dialogue 70 5.2.2 Dialogue State Tracking 72 5.2.3 Conversation Modeling 72 5.3 Variational Hierarchical Dialogue Autoencoder (VHDA) 73 5.3.1 Notations 73 5.3.2 Variational Hierarchical Conversational RNN 74 5.3.3 Proposed Model 75 5.3.4 Posterior Collapse 82 5.4 Experimental Results 84 5.4.1 Experimental Settings 84 5.4.2 Data Augmentation Results 90 5.4.3 Intrinsic Evaluation - Language Evaluation 94 5.4.4 Qualitative Results 95 5.5 Summary 101 6 Conclusion 103 6.1 Summary 103 6.2 Limitations 104 6.3 Future Work 105Docto

    Variational Bayes Estimation of Discrete-Margined Copula Models with Application to Time Series

    Full text link
    We propose a new variational Bayes estimator for high-dimensional copulas with discrete, or a combination of discrete and continuous, margins. The method is based on a variational approximation to a tractable augmented posterior, and is faster than previous likelihood-based approaches. We use it to estimate drawable vine copulas for univariate and multivariate Markov ordinal and mixed time series. These have dimension rTrT, where TT is the number of observations and rr is the number of series, and are difficult to estimate using previous methods. The vine pair-copulas are carefully selected to allow for heteroskedasticity, which is a feature of most ordinal time series data. When combined with flexible margins, the resulting time series models also allow for other common features of ordinal data, such as zero inflation, multiple modes and under- or over-dispersion. Using six example series, we illustrate both the flexibility of the time series copula models, and the efficacy of the variational Bayes estimator for copulas of up to 792 dimensions and 60 parameters. This far exceeds the size and complexity of copula models for discrete data that can be estimated using previous methods

    Generative Models For Deep Learning with Very Scarce Data

    Full text link
    The goal of this paper is to deal with a data scarcity scenario where deep learning techniques use to fail. We compare the use of two well established techniques, Restricted Boltzmann Machines and Variational Auto-encoders, as generative models in order to increase the training set in a classification framework. Essentially, we rely on Markov Chain Monte Carlo (MCMC) algorithms for generating new samples. We show that generalization can be improved comparing this methodology to other state-of-the-art techniques, e.g. semi-supervised learning with ladder networks. Furthermore, we show that RBM is better than VAE generating new samples for training a classifier with good generalization capabilities
    • …
    corecore