creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Deep Generative Data Augmentation for
Natural Language Processing

HEd 7|Eh A RElE o] gk
oA =] gloly S7F 719
BY

KANG MIN YOO

FEBRUARY 2020

DEPARTMENT OF COMPUTER SCIENCE &
ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Ph.D. DISSERTATION

Deep Generative Data Augmentation for
Natural Language Processing

HEd 7|Eh A RElE o] gk
oA =] gloly S7F 719
BY

KANG MIN YOO

FEBRUARY 2020

DEPARTMENT OF COMPUTER SCIENCE &
ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Deep Generative Data Augmentation for

Natural Language Processing

2020 2¢¥

Tor
Ho
iy
HE

T

20204 2

—_—

NF
o

—

A

—_—

o

9.

_SH
_(H
_([)4

(1)

A =

=15
=

:




Abstract

Recent advances in generation capability of deep learning models have
spurred interest in utilizing deep generative models for unsupervised generative
data augmentation (GDA). Generative data augmentation aims to improve the
performance of a downstream machine learning model by augmenting the orig-
inal dataset with samples generated from a deep latent variable model. This
data augmentation approach is attractive to the natural language processing
community, because (1) there is a shortage of text augmentation techniques
that require little supervision and (2) resource scarcity being prevalent. In this
dissertation, we explore the feasibility of exploiting deep latent variable mod-
els for data augmentation on three NLP tasks: sentence classification, spoken
language understanding (SLU) and dialogue state tracking (DST), represent
NLP tasks of various complexities and properties — SLU requires multi-task
learning of text classification and sequence tagging, while DST requires the un-
derstanding of hierarchical and recurrent data structures. For each of the three
tasks, we propose a task-specific latent variable model based on conditional, hi-
erarchical and sequential variational autoencoders (VAE) for multi-modal joint
modeling of linguistic features and the relevant annotations. We conduct ex-
tensive experiments to statistically justify our hypothesis that deep generative
data augmentation is beneficial for all subject tasks. Our experiments show that
deep generative data augmentation is effective for the select tasks, supporting
the idea that the technique can potentially be utilized for other range of NLP
tasks. Ablation and qualitative studies reveal deeper insight into the underlying
mechanisms of generative data augmentation. As a secondary contribution, we
also shed light onto the recurring posterior collapse phenomenon in autoregres-

sive VAEs and, subsequently, propose novel techniques to reduce the model risk,



which is crucial for proper training of complex VAE models, enabling them to
synthesize better samples for data augmentation. In summary, this work intends
to demonstrate and analyze the effectiveness of unsupervised generative data
augmentation in NLP. Ultimately, our approach enables standardized adoption
of generative data augmentation, which can be applied orthogonally to existing

regularization techniques.

Keywords: natural language processing, variational autoencoder, data
augmentation, language generation, latent variable model, generative
model, text classification, spoken language understanding, dialogue state
tracking
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Chapter 1

Introduction

1.1 Motivation

Recently, impressive advances in generative capabilities of deep learning mod-
els have been observed in both the vision domain (Karras et al., 2019) and
the language domain (Radford et al.). Photo-realistic synthetic images from
generative adversarial networks (GAN) and coherent texts generated from pre-
trained transformer networks have become harder to distinguish from the real
counterparts with human perceptions. The advances are attributed partly to
the expansion of our knowledge in effective architectural choices and optimiza-
tion techniques to maximize the expressive power of existing deep learning
models (Vaswani et al., 2017; Arjovsky et al., 2017), while some other are at-
tributed to even larger models realized through constantly improving computa-
tional hardwares (Devlin et al., 2018). That begs the question: can we leverage
ever-improving generative models to assist the training of supervised machine
learning models?

Data augmentation is defined as a class of data-oriented techniques for ex-
panding existing datasets with class-preserving synthetic data points to alle-
viate the overfitting of resulting machine learning models (Tanner and Wong,
1987). It has been adopted in various forms (Krizhevsky et al., 2012; Dao et al.,
2019) and in various domains (Van Dyk and Meng, 2001; Zhang et al., 2015)
as an orthogonal approach to regularization techniques. With recent advances

in deep general model, hypothetically, one might be able to construct a gen-



erator that perfectly mimics the true data distribution, which then can be
used to sample as many data points as one wishes for augmenting a training
set. In practice, such “perfect” data models are infeasible, but, with the re-
cent emergence of deep generative models that achieve impressive realism, it
is unclear whether near-perfect deep generative models are tangible tools for
exploring novel samples for training set augmentation. Imperfect data models
could probabilistically generate incoherent data samples, which might distort
the augmented data distribution, negatively affecting the downstream model.
However, if the benefit from discovering valuable novel samples from the gener-
ative model outweighs the degradation caused by data distribution distortion,
then data augmentation using generative models could potentially be a fea-
sible technique for optimizing machine learning models. This theoretical phe-
nomenon had actually been preliminarily observed in a prior work (Hu et al.,
2017), where the authors showed that a VAE-based text generative model can
be used to synthesize class-preserving samples to achieve data augmentation
for text classification.

The question is highly relevant for the natural language processing (NLP)
community, as there are two major hurdles in NLP that are not as prounounced
as in other domains. First, low-level data augmentation, for example introduc-
ing small transformative noises in the image space while maintaing the original
label, is not readily available and not fully understood in the NLP domain.
Class-invariant image scaling and transformation techniques have been widely
adopted in image classification tasks (Krizhevsky et al., 2012), but the equiva-
lent in the NLP domain has yet to be discovered. There have been various text
augmentation techniques (Zhang et al., 2015; Wei and Zou, 2019) proposed in
the past, but the techniques are mostly task-specific or domain-specific and are
still in the infant stage in terms of adoption rate compared to image augmen-

tation techniques.
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Specifically, an ideal data augmentation technique must be able to generate
(1) class-preserving and (2) realistic samples, where the latter property means
that the synthetic samples must adhere to the true data distribution. Current
approaches for data augmentation in NLP tasks largely revolve around the-
saurus data augmentation (Zhang et al., 2015), in which words that belong to
the same semantic role are substituted with one another using a preconstructed
lexicon, and noisy data augmentation (Wei and Zou, 2019) where random edit-
ing operations such as insertion, deletion and substitution is applied to the
language space. Thesaurus data augmentation satisfies both properties of an
ideal technique, but it requires a set of handcrafted semantic dictionaries, which
are costly to build and maintain; whereas noisy data augmentation does not
guarantee synthetic samples to be realistic.

Second, linguistic resource scarcity is a persistent issue for many language-
specific, task-specific, or domain-specific problems in NLP (Besacier et al., 2014;
Banea et al., 2008), which exposes the downstream machine learning models to
the risk of overfitting. The typical approaches to alleviate the issue can clas-
sified into two categories, in which (1) resource augmentation techniques aims
to enrich the training set with better data construction methods or external
resources (Barnard et al., 2009; Scannell, 2007) and (2) model augmentation
techniques achieves the goal by developing complex models or training tech-
niques to increase the generalization capabilities (Cai et al., 2014; Lu et al.,
2011). Generator-based data augmentation could be classified as a resource
augmentation technique with self-discovery of unseen samples through the ex-
plorative aspect of deep latent variable models - the main driving engine behind
generative models. Standardization of generator-based data augmentation could
potentially be indiscriminately used to alleviate data-related problems for any
structured text datasets to improve the robustness of downstream models.

Before we delve into the feasibility of deep generative models for data aug-
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mentation, we first turn to recent advances in latent variable models, a general
class of probabilistic approach for modeling complex datasets with certain prior
knowledge about the internal governing structure of the datasets. Latent vari-
able models pertains modeling of a data distribution x through the inference
of latent variables z that best explain the dataset. With the rise of deep neu-
ral networks, latent variable models became extremely effective in modeling
and generating images (Goodfellow et al., 2014) and texts (Bowman et al.,
2016). Variational inference methods, which are techniques for approximating
the inference of latent variable models, have also contributed to the explosion of
generative models, especially those that are based on variational autoencoders
(VAE) (Kingma and Welling, 2013). Generative adversarial networks (GAN)
(Goodfellow et al., 2014) are another prominent class of deep generative models
due to its intuitive framework setup. Although both approaches have received
significant attention from the overall machine learning community, VAEs have
been more actively researched in the NLP community because of the difficulty
of implementing GAN architectures for text generation in practice (Zhang et al.,
2016¢) and the fact that the NLP community is generally interested in the abil-
ity to map the feature space to the latent space (encoder/inference network) as
well. Furthermore, the fact that VAEs allow explicit definition of distributional
families makes VAEs more suitable for controlled text generation than GANs.

Synthesizing samples from latent variable models and using them as aug-
mentational data can be helpful in two ways. First, we can understand the
process of generator-based data augmentation as a form of data-side “regular-
ization”. The original dataset might contain sampling biases, which are one type
of the major causes of overfitting (Vezhnevets and Barinova, 2007). By sampling
from a latent variable model approximated with variational inference and using
the generated samples to augment the original dataset, one could effectively

“regularize” the training data distribution. Second, generative sampling from



deep latent variable models offers an automatic way to discover novel sam-
ples, thanks to the prior and distributional family assumptions. Because the
true data distribution of real-world data can not be perfectly modeled using
the usual choices of distributional families (e.g. Gaussian), the excess proba-
bilities imperfectly inferred by the posterior or the prior distributions facilitate
in exploration. Hence, the VAE-based model family is an attractive choice as
the backbone generator framework: the existence of the inference network and
the flexibility of choosing distributional families grants sample realism and the
ability to explore novel data points.

Based on aforementioned intutions, we summarize our research questions as

follows, for which this dissertation will be dedicated to provide insights.

1. Can deep generative models be leveraged for data augmenta-

tion?

2. To what extent does the generator-driven data augmentation

help in NLP tasks?

3. How can we maximize the benefit of generative data augmenta-

tion?

By the end of the dissertation, we not only wish to offer insights for the feasi-
bility of employing generative data augmentation as a general machine learning
technique in NLP tasks, but we also wish to explore the underlying mechanisms
and conditions on which downstream benefit of generative data augmentation
is maximized. Fow now, we use the term generative data augmentation to define
a class of data augmentation techniques that utilize deep generative models to
generative synthetic samples for improving downstream models, although we

elaborate related terms in Chapter 2,



1.2 Dissertation Overview

The contributions of the dissertation is summarized as follows:

1. We conduct a comprehensive survey on data augmentation techniques in
current literature, by offering a fresh perspective on the categorization
of existing data augmentation techniques. Based on the survey, we for-
malize the notion of generative data augmentation, a novel type of data
augmentation technique that leverage deep generative models based on

deep latent variables for improving downstream NLP tasks.

2. To demonstrate the effectiveness of generative data augmentation to NLP,
we propose three deep latent variable models for learning to generate
fully annotated text datasets specialized in following NLP tasks: sentence
classification, spoken language understanding and dialogue state tracking.
We conduct statistical tests to support our hypothesis that generative
data augmentation can reliably yield positive results for the select tasks.
In addition, we conduct qualitative analysis to show that the samples

generated from our models are realistic.

3. Autoregressive VAEs, on which all of our proposed generative models are
based, are known to be susceptible to the posterior collapse phenomenon.
In order to reduce the risk, we propose various techniques, specifically I-
VAE training policy (Chapter 3) and the mutual information trick (Chap-
ter 5). Although these techniques are proposed with specific VAE struc-
tures in mind, these methods are applicable to other VAE-based models

with similar structural characteristics.

The rest of the thesis is structured as follows. In Chapter 2, we provide an
overview of the related research area and the relevant trends in recent years

as the foundation of the dissertation. In Chapter 3, we begin our exploration



of generative data augmentation in NLP tasks with a relatively simple task:
text classification, which serves as the demonstration of the feasibilty of gen-
erative data augmentation in real text corpora. We show that generative data
augmentation, implemented by a VAE model designed specifically for modeling
sentence-label pairs, yields positive results on downstream classifier models. In
Chapter 4, we investigate generative data augmentation for the spoken language
understanding task, which consists of two sub-tasks: intent classification and
slot-filling (sequence tagging). We tackle the problem as a multi-task problem,
and propose a VAE-based joint-learning model that is able to generate novel
samples for improving the performance of baseline NLU models. We conduct ad-
ditional experiments to examine the various conditions in which the generative
data augmentation technique is most effective, such as data scarce scenarios and
varying synthetic to real data ratios. In Chapter 5, we take the final challenge
in applying generative data augmentation on a relatively complex task in the
NLP domain — dialogue state tracking. We propose a novel VAE architecture
that is able to fully model structured goal-oriented dialogues by leveraging its
hierarchical and recurrent design. We realized the omplex VAE model with the
help of two proposed techniques for reducing the risk of posterior collapse. Us-
ing state-of-the-art dialogue state trackers as the baseline, we empirically show
that generative data augmentation is effective for the complex task. In Chapter
6, we review the implications and limitations of our findings, and we conclude

the dissertation with suggestions on possible future research directions.



Chapter 2

Background and Related Work

In this chapter, we provide an overview of the background material related
to the subjects discussed in this thesis. Section 2.1 introduces the theoretical
background and major concepts for latent variable models, as well as some
recent developments in the field. Section 2.2 reviews various approaches to data

augmentation in the current literature.

2.1 Deep Latent Variable Models

Latent variable models provide a concrete mathematical foundation for the
fundamental problem of data analysis. The natural language processing do-
main has taken great advantage of the expressive flexibility of latent variable
models, exploiting relevant prior knowledge about the data to achieve state of
the art models for topic modeling (Blei et al., 2003), machine tranlsation (Blun-
som et al., 2008; Zhang et al., 2016a), grammar induction (Klein and Manning,
2004; Kim et al., 2019), and dialogue modeling (Serban et al., 2017; Shen et al.,
2017b). With recent advancements and rediscovery of the generalizing power
of deep neural networks (Zhang et al., 2016b), existing latent variable mod-
els have been expanded to take advantage of the new paradigm. By exploiting
of both methodologies, in which the probabilistic graphical model theory pro-
vides the flexibility of modeling complex dependencies among latent variables
and deep neural networks realize those complex dependencies using parameter-

ized architectures, the natural language processing domain has flourished with
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Figure 2.1: Types of variational inference (VI) in latent variable models

record-breaking researches such as machine comprehension (Yang et al., 2019b)
and machine translation (Wu et al., 2016).
The ultimate goal of designing and realizing latent variable models is to

propose a set of latent variables z that best explain the observable data x:

p(x) = [ plx.2)dz 1)

z

However, the integration over z is intractable and thus requires an approxi-
mate inference method, such as variational inference, to compute the solution.
Variational inference, also known as variational bayes, is a set of appoximation
methods that assume a family of distributions over the latent variables with
variational parameters A (Figure 2.11).

Given a dataset xq,...,xXy, variational inference needs to find variational

parameters A, ..., Ay that can be used to define a variational family of distri-

!'Note that the model parameters § have been omitted for brevity.

A - -1]| 5+ 11



butions ¢)(z) parameterized by A (Figure 2.1b). The objective for variational

inference is to maximize the evidence lower bound (ELBO):

logpg(x) > Eyg, (z)[log p(x | 2)] — Dkr(qx(2)[Ip(2)) (2.2)

Stochastic variational inference (SVI) (Hoffman et al., 2013) optimizes di-
rectly for instance-specific variational distributions by applying gradient ascent
on the same set of parameters A\ for all data (Figure 2.1c¢). In practice, the
variational parameters A and model parameters 6 are optimized in alternation,
potentially falling into local optima where the approximate posterior or the
model posterior collapses onto the prior?.

Amortized variational inference (AVI) improves upon SVI by using a global
parameterized model to predict A for each data point (Figure 2.1d). Hence, in
AVI, X is no longer a set of parameters but an intermediate factor, and we

usually use ¢ to denote the set of parameters that are used to predict the latent

variables: gg(z | x).

2.1.1 Variational Autoencoder (VAE)

Variational autoencoders are a special case of latent variable models with amor-
tized variational inference (Kingma and Welling, 2013) and it is a popular ap-
plication of variational inference for deep latent variable models. The global
parameterized model for predicting A is called the inference network or the
encoder network, and it is usually modeled by complex deep learning models
which depend on the input modality. The objective of VAE is to maximize the
following ELBO:

log pg(x) = Eyng,(zx[log p(x | 2)] — Dkr(gs(z | x)[[p(2)) (2.3)

2More details about the posterior collapse phenomenon can be found in Appendix A.
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In the right-hand side of the ELBO, the first term is called the reconstruction
term and the second term is called the KL-divergence term, which encourages
the minimization of the distributional distance between the approximate pos-
terior ¢y (z | x) and the prior p(z).

The usual choice for the prior is the unit multivariate Gaussian distribution,
as the analytic solution for the KL-divergence term can be computed easily. The

KL-divergence of two Gaussian distributions is given by

%"‘ T ? 1
Dir (N (1, 02) | (1, 04)) = log 7% + (s — i) -5 (29

- 205
If one of the distributions is a unit Gaussian, then the analytic solution can
be rewritten to
o24+pu2 1

T (2.5)

DkL(N (pa, 02) [IN(0,1)) = —log oz +

The approximate posterior is also applied with the mean field assumption,
which states that each latent variable is independent from each other, allowing
factorization of the joint posteriors. This is realized by choosing distributions
in which the covariance of the multivariate Gaussian distribution is assumed
to be diagonal: gg(z | x) = N (114(x),04(x)I). Due to the strong assumption
of the family of distributions, some works have proposed using other classes of
distributions such as Von Mises-Fisher (Xu and Durrett, 2018) or techniques
that enable the modeling of arbitrary distributions such as normalizing flow
(Rezende and Mohamed, 2015). However, due to the implementation and infer-

ence complexity of more advanced distributions, multivariate Gaussian distri-

butions with diagonal covariance remain the more prevalent choice for VAEs.
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2.1.2 Deep Generative Models and Text Generation

Many variants of VAEs have been explored in the language domain. Notably,
VAEs with sequence-to-sequence architecture (Sutskever et al., 2014) as the
backbone for the encoder and decoder has been explored with variational re-
current auto-encoders (VRAE) (Fabius and van Amersfoort, 2014). Generative
adversarial networks (GAN) are another class of latent variable models with
implicit latent distribution (Goodfellow et al., 2014), which has seen adapta-
tions for texts (Yu et al., 2017; Fedus et al., 2018). Recently, some work have
explored deep generative models in the context of controllable generation and
style transfer (Hu et al., 2017; Shen et al., 2017a; Fu et al., 2018), specifically

using variational generative models.

2.2 Data Augmentation

Many machine learning pipelines systematically employ augmentation for the
training data in one way or the other to improve the model’s generalizing capa-
bility. Adoption of data augmentation techniques has been steadily growing in
domain-specific cases, especially in resource-scarce situations, such as medical
imaging (Nguyen et al., 2019; Yoon et al., 2019) and domain-specific spoken
language understanding tasks (Hou et al., 2018; Kurata et al., 2016b). To gain
deeper understanding of data augmentation, this section provides a technical
overview of the technique. Furthermore, we offer an systematic perspective on
the classification of data augmentation, where we categorize techniques based
on the source of augmentational knowledge and the type of supervision. The
proposed perspective lays the foundation for investigating the mechanism be-

hind data augmentation.

12 I =



Figure 2.2: Depiction of general data augmentation.

2.2.1 General Description

Data augmentation has been widely adopted in various domains as a practi-
cal and powerful technique to alleviate data insufficiency for data-hungry deep
learning models, as it has been shown to be effective for tasks including, but not
limited to, multi-class image classification (Krizhevsky et al., 2012), visual ob-
ject detection (Zhong et al., 2017), auditory detection (Takahashi et al., 2016),
text classification (Zhu et al., 2003), spoken language understanding (Hou et al.,
2018; Yoo et al., 2019), machine translation (Fadaee et al., 2017), and relation
classification (Xu et al., 2016).

For the rest of this subsection, we establish a set of notations for describing
data augmentation. For clarity without the loss of generality, we assume the
task for which the data augmentation is used is text classification, in which
we fit a classifier model fy(y | x) parameterized by 6 on a set of data points
D ={(x1,y1),---,(xn,¥nN)}. Here, x € X are the data point features defined
over the feature space X and y € ) are the corresponding labels defined over
the label space V. Data augmentation has been adopted in various forms, but
the common idea can be illustrated in Figure 2.2. Given a dataset of input
features and labels D = {(x1,y1),-.., (Xn,y¥n~)}, which was sampled from the
empirical data distribution py(x,y), the goal of data augmentation is to en-

hance the original dataset D with a new augmentational dataset D (which is
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sampled or generated from the augmentational data distribution p(x,y)). The
augmentational dataset D is combined with the original dataset D to form a
new dataset D’ that follows an updated data distribution. By fitting the classi-
fier model fy on D’ instead of the original dataset D, we expect less overfitting
and improved robustness of the downstream classifier models, achieving better
results on unseen test data. After applying data augmentation, the new data
distribution that is learned by the downstream classifier models is a mixture of

the original and the augmentational data distributions:

A

(Xay) + mA(Xv}I) (26)

* _
pr(x,y) = TP

where A is a hyperparameter that controls the mixture ratio between the
two distributions. The motivation of employing data augmentation is to bring
the new data distribution p* closer to the true data distribution p by diluting
the original distribution with augmentational data.

Complying to this common framework for data augmentation, various forms
of data augmentation have been suggested and adopted in previous works. We
categorize most data augmentation techniques based on the source of augmen-
tational knowledge and the type of supervision. The following subsection goes

through each category and provide detailed explanation and relevant cases.

2.2.2 Categorization of Data Augmentation

In order to synthesize or sample augmentational data that bring the final aug-
mented data closer to the true data distribution, there must a mechanism which
introduces some form of knowledge into the data. For example, knowledge might
be injected through direct manipulation of the image feature space that is known
to be class-preserving. Class-preserving feature transformations introduces the
prior knowledge about the image spaces that maintains the class of the orig-

inal data. For another examples, knowledge might be self-discovered through
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Figure 2.3: An example of supervised learning for text classification without
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data augmentation.

exploration in the latent space deep latent variable models. Hence, data aug-
mentation techniques can be categorized based on how external knowledge is
acquired and injected into the machine learning framework as the form of data.
As an extension of the framework described in the previous subsection, we illus-
trate how different types of data augmentation interact with the main machine
learning framework. The basic machine learning framework is shown in Figure

2.3.

Supervised Data Augmentation

Supervised data augmentation relies on external knowledge of the joint data-
label distribution, whether it be from external datasets from other but simi-
lar domains or freshly constructed human-annotated datasets. Supervised data
augmentation can be further sub-categorized based on the source of the aug-
mentational data.

External Data Augmentation. This class of data augmentation tech-
niques aims to acquire knowledge from o ther data sources that might or might
not share the same domain as the original dataset (Figure 2.4). The augmen-
tational data might contain data samples irrelevant to the target data distri-

bution, however, the intuition is that deep learning-based classifier models are
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Figure 2.4: Supervised data augmentation with external data.

able to distinguish the relevant features from the noise, making the resulting
model more robust. Data augmentation through expanding datasets from sim-
ilar datasets have been used widely in various tasks, achieving state of the
art models in problems such as image classification, visual question-answering
(VQA) (Jiang et al., 2018) and text classification (Conneau et al., 2017).

In some cases, only the input features might be available as external data,
hence an oracle might be required to annotate the labels based on the available
input features (Nguyen et al., 2019), as depicted in Figure 2.5.

Transformational Data Augmentation. Data can be sourced from the
original dataset itself, if the knowledge about the class-invariant transforma-
tions is known beforehand (Figure 2.6). An oracle that contains the external
knowledge injects it into the augmented dataset by generating variations within
the class-invariant space for each data point. The operations that introduce vari-
ations in the data space may be as simple as translations in images or complex
- so complex that the operation may require parameterization (Cubuk et al.,
2019). Particularly in the vision domain, utilization of class-invariant kernel fil-
ters, geometric transformations, random masking, color space transformations

has been explored by various works (Krizhevsky et al., 2012; Perez and Wang,

16 I =



Real Data
Source

&

4—[ Classifier fy ]—> v(;)
x

y
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Figure 2.6: Transformational data augmentation.
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Figure 2.7: Semi-supervised data augmentation.
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2017; Shorten and Khoshgoftaar, 2019). As for the NLP domain, noisy data aug-
mentation (synonym replacement, random insertion, random swap and random
deletion), which might behave as approximation to class-invariance transfor-
mations, had been adopted for text classification (Wei and Zou, 2019), and
thesaurus data augmentation had been adopted for machine translation and
spoken language understanding (Zhang et al., 2015; Ma et al., 2016). For speech
recognition task, class-invariant audio wave manipulation was explored in (Ko
et al., 2015). Not all transformation techniques are guaranteed to generate real-
istic samples, and in some cases, unwarranted noises might get introduced. For
example, random insertions and random swaps in (Wei and Zou, 2019) could
generate ungrammatical sentences; however, some studies find that obfuscation
of the decision boundary prevents overfitting, enhancing the resulting classifier

model to be more robust towards real-world data.

Semi-supervised Data Augmentation

The knowledge source for augmentation could be partially external, with the
rest of the knowledge filled-in without supervision (Figure 2.7). The act of

augmenting input features from external unannotated data sources, such as
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Figure 2.8: Zero-shot generative data augmentation.
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large-scale text corpora, and using a classifier model trained from the original
dataset to annotate and filter the external data source can be seen as a form of
semi-supervised data augmentation (Ragni et al., 2014). Some of the notable
early works in this line of approach (Zhu et al., 2003) exploits knowlede about

the class prior to expand labeled dataset.

Unsupervised Data Augmentation

Zero-shot Data Augmentation. Unsupervised data augmentation enables
the discovery of augmentational data without explicit injection of external
knowledge or data sources. Typically, a generative model g4 is trained on the
original dataset D and new samples are obtained by generating plausible sam-
ples through perturbations (Figure 2.8), which we use the term generative data
augmentation (GDA) to describe. Latent variable models with variational in-
ference, such as VAEs, can be employed to learn the most likely distributions of
the latent variable, and synthetic samples are generated by sampling from the

prior of the latent variable distribution (Hu et al., 2017; Hsu et al., 2017). Due
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Figure 2.9: Self-supervised data augmentation.
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to the robustness of deep learning models, prior works achieved a similar effect
without employing variational inference (Kurata et al., 2016b; Hou et al., 2018).
However, with advancements in variational deep models, we explore leveraging
the expressive and explorative power of VAEs to enhance generative data aug-
mentation in various tasks of NLP.

Self-supervised Data Augmentation. In contrast to performing zero-
shot data augmentation through generative models, a recent line of work has
suggested self-supervision mechanism as a way to further fine-tune the gener-
ators for the downstream classifier task. Adversarial learning combined with
generators is a popular choice for achieving this effect (Tran et al., 2017; Anto-
niou et al., 2017). However, the main focus of our work is to explore the extent
at which generative ata augmentation can be useful for various representative
tasks in NLP, hence we limit the scope of the dissertation to zero-shot GDA
and not incorporating adversarial learning into our models. As the extension of
our work, we wish to explore whether employing task-specific fine-tuning policy

further improves the performance of zero-shot generative data augmentation.
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Figure 2.10: Relationships among data distributions in generative data augmen-

tation framework.

On the other hand, some works have focused on searching the best transfor-
mational data augmentation strategy through self-learning(Cubuk et al., 2019),
which could be viewed as a form of supervised data augmentation refined with
self-supervision. Early works on adversarial learning have proposed injecting
random perturbations in hidden representations of sequence-to-sequence mod-
els to improve text classification (Miyato et al., 2016), but unlike most works
in generative data augmentation, these approaches do not involve generative

models.

2.2.3 Theoretical Explanations

For data-hungry models, appropriate regularization is necessary to achieve high
performance. Model regularizers such as dropout (Srivastava et al., 2014) and
batch normalization (Ioffe and Szegedy, 2015) are widely accepted techniques to
prevent model overfitting and promote robustness. Transfer learning is another
regularization technique to enhance the generalization power of models that has
achieved success across numerous domains and tasks (Pan and Yang, 2010).
Data augmentation (DA) can be considered an orthogonal class of regular-

ization methods that create artificial training data to obtain better resulting
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models. Most DA techniques proposed in the literature can be categorized into
either transformative or generative methods. Transformative data augmenta-
tion relies on unparameterized data-transforming functions embued with ex-
ternal knowledge to synthesize new class-preserving data points (Dao et al.,
2018). Transformative DA is widely used in the vision domain. For example,
images are randomly perturbed with linear transformations (rotation, shifting
etc.) to boost performances in many vision-related tasks (Simard et al., 2003;
Krizhevsky et al., 2012).

On the other hand, Generative DA (GDA) exploits the generative power
of latent variable models to artificially create convincing data samples. With
advances in powerful generative models such as VAEs and GANs, the potential
to leverage them for data augmentation has gained much attention recently.
Particularly, performance gains from generated datasets have been studied and
documented in the VQA task (Kafle et al., 2017), general image classification
(Ratner et al., 2017), and few select SLU tasks (Kurata et al., 2016a; Hou
et al., 2018). However, relevant researches are hurdled by the architectural and
experimental complexities. Meanwhile, kernel theory has been suggested as a
means of explaining transformational data augmentation (Dao et al., 2019).
Data augmentation can also be seen as the act of calibrating the training set
toward the true data distribution, which has been offset by various biases in
the empirical data distribution pg such as sampling biases.

Specifically, a general framework of generative data augmentation (GDA) is
depicted in Figure 2.10. In the figure, solid arrows ( — ) denote training, dashed
arrows ( -- ) denote generation, dot-dashed arrows ( - - ) denote distortion, and
dotted arrows (- ) denote data duplication. D’ is the final augmented dataset
for training SLU models. The goal of GDA (enclosed in loosely dotted lines) is
to recover the true data distribution p through sampling, as if the samples are

drawn from the corrected model distribution.
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Suppose that IID samples x € D were intended to be sampled from a
true but unknown language distribution p(x) € P, where P is the probability
function space for x. However, in real world cases, the actual distribution repre-
sented by the D,, could be distorted due to biases introduced during erroneous
data collection process or due to under-sampling variance (Torralba and Efros,
2011). Let such distortion be a function w, € 2 : P — P. The distorted data
distribution p* = wy, (p) diverges from the true distribution p, i.e. d (p*,p) > 0
where d is some statistical distance measure such as KL-divergence.

An ideal GDA counteracts the bias-introducing function wjy and unearths the
true distribution p through unsupervised explorative sampling. Suppose that a
joint language understanding model p(x) is trained on x ~ p*(x). Without
the loss of generality, suppose that the model is expressive enough to perfectly
capture the underlying distribution, i.e. p = p*. We collect m samples D =
{X1,...,%Xpy} drawn from p(x) and combine them with the original dataset D
to form an augmented dataset D’ of size n + m. Naive DA will not yield better
SLU results as synthetic data samples x follow the distorted data distribution
p* in the best case. However, an ideal explorative sampling method and latent
variable model’s internal assumption about the data distribution could distort
the sampling distribution, as if X were sampled from another distribution p*,
such that the new distribution is closer to the true distribution (i.e. d (p*,p) <
d (p,p)). There exists a distortion function wy such that p* = wy (p). The ideal
sampling method and the regularizing effect of distribution assumptions can be
seen as a corrective function wy that undos the effect of wy. In this dissertation,
we propose and investigate different sampling methods wy for the maximal
DA effect. These methods are described in model description sections. The

implementation details are covered in the experiments sections.
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2.3 Summary

In this chapter, we have covered the background knowledge for deep latent
variable models and different approaches for data augmentation related to the
ideas proposed in this dissertations. Prior work has explored ways to construct
complex variational latent variable models, while some other work has pro-
posed various techniques to prevent posterior collapse that accompany during
the training of such models. We have also provided a comprehensive survey on
the current approaches to data augmentation and offered a fresh perspective on
different takes on the technique. To the best of our knowledge, this dissertation
is the first to formalize the notion of zero-shot generative data augmentation,
not to mention in the context of NLP. In the subsequent chapters, we begin
our journey in exploring zero-shot data augmentation for various NLP tasks,
proposing various generative models and achieving meaningful results for sen-
tence classification (Chapter 3), spoken language understanding (Chapter 4),

and dialogue state tracking (Chapter 5).
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Chapter 3

Basic Task: Text Classification

Text classification is one the fundemental tasks in the NLP domain. Numerous
NLP tasks such as natural language understanding and sentiment analysis in-
corporates text classification to achieve the higher-level goal of the respective
tasks. In this chapter, we explore generative data augmentation in a simple su-
pervised learning setting where the goal is to classify a string of text into one of
the predetermined number of classes. This simple and tractable setting allows
us to perform various analysis on the underlying mechanism of generative data
augmentation and the qualities of the generative model itself. This chapter will
also serve as an introductory material for readers to familiarize with the typical
generative data augmentation pipeline, where it starts out with architecture
ideation of the generative model, followed by a definition of the downstream
classifier /discriminator models. We will describe the training procedure of the
generative model if necessary and also outline the datasets on which we test
generative data augmentation. Experiments will always consist of a set of main
data augmentation experiments, followed up by a series of ablation and quali-
tative studies that incrementally shed light on the properties of generative data

augmentation.

3.1 Introduction

Variational autoencoders (VAE), on which our generative models proposed in

this dissertation are based, are powerful latent variable models married with
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variational inference that offer flexibility and expressiveness to model and gen-
erate text data. The NLP community has greatly benefitted from the advance-
ment of VAEs, employing variational generative models for single sentence gen-
eration (Bowman et al., 2016; Semeniuta et al., 2017; Yang et al., 2017), para-
phrase generation (Gupta et al., 2018), sentence matching (Xie and Ma, 2019;
Choi et al., 2019), and dialog generation (Zhao et al., 2018; Shen et al., 2017b;
Gu et al., 2018). Despite achieving great achievement in various NLP tasks,
VAEs are still challenging to implement due to their sensitvity towards hyper-
parameter choices. The tendency of VAE models lose stability and spiral into
local optima, also known as the posterior collapse phenomenon, is a well-known
issue and has been studied extensively by various works (Bowman et al., 2016;
Hu et al., 2017; Semeniuta et al., 2017). The phenomenon is more prominent
when dealing with conditional or recurrent VAEs, which are requried for mod-
eling joint distribution of text and some other annotation such as sentence
classes and word-level sequence tags. In this chapter, in addition to presenting
the standard generative data augmentation for text classification, we also intend
to unearth and briefly elucidate the inner workings of VAE training and lay the
foundation for hazards of developing complex VAE-based models in subsequent
chapters.

Previous works have proposed weakening the decoders’ expressive power
(Semeniuta et al., 2017), intentionally impairing autoregressive training of the
decoders (Bowman et al., 2016; Serban et al., 2017; Park et al., 2018), adjusting
the KL-divergence regularizer constraint (Higgins et al.; Bowman et al., 2016;
Razavi et al., 2019), and employing specific measures to empower the encoder
training (He et al., 2019; Kim et al., 2018b). However, some of the measures
are insufficient to reduce the hyperparameter search space to a manageable
level and some others incur significant computational costs (Higgins et al.; Kim

et al., 2018b). We propose a simple but effective training policy to mitigate
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posterior collapse. The details about the intuition of our method is described
in Appendix A.

With the effective training policy in hand, we devise a relatively simple
conditional VAE structure for modeling sentences and their annotations. We
show that the generative model synthesizes useful samples that improves the
baseline sentence classifier on several text datasets. Qualitative analysis is also
conducted to analyze the properties of the generative model itself.

In summary, the contribution of this chapter is as follows: using the novel
VAE training technique, we realize two candidate conditional VAE models for
modeling sentence classification datasets. We conduct statistically reliable ex-
periments to preliminarily show that well-trained generative models can be used
to boost the performance of the downstream classifiers. We also conduct com-
parative studies to study the difference in behavior betweeen the two candidate
models. Finally, we demonstrate how conditional generative models can be not
only be used for generative data augmentation but for other generation tasks
such as paraphrasing and style transfer.

The reset of the chapter is structured as follows. In Section 3.2, we introduce
two simple VAE-based models that can learn the distribution of language and
the associated single label effectively. In this same section we present the simple
training policy for mitigating posterior collapse. In Section 3.3, by utilizing the
algorithm we proposed in this section, we conduct data augmentation experi-
ments on various datasets to show that our VAE models is able to boost the
performance of baseline classification models. We also present some interesting
results of our qualitative assessment of the generated samples. We conclude the

section with a summary and after-thoughts about the discoveries.
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Figure 3.1: Graphical representations of LS-VAE and SL-VAE

3.2 Owur Approach

In this section, we propose a data augmentation approach for sentence classifi-

cation tasks based on latent variable models.

3.2.1 Proposed Models

Given a pair of sentence and label variables x = (x(s),x(l)), the goal of a
latent variable model is to effectively model the joint distribution of the two
data variables. There are two possible design choices depending on the point
of view on the relationship between the two latent variables z(®) and z(, as
shown in Figure 3.1. The first point of view assumes that the label has prece-
dence over the sentence: pg (z(s),z(l)) = py (z(s) | Z(l))pg (z(l)) (Figure 3.1a).
The second point of view assumes that the sentence determines the label:
Do (z(s), z(l)) = py (z(l) | z(5)>p9 (z(5)> (Figure 3.1b), in which py (z(l) | z(s)> can
be considered an implicit classifier that overlaps with the baseline classification
model. Both are theoretically plausible, thus the only effective way to compare
them is to conduct downstream data augmentation for both models and analyze
the results. More details about the model comparison experiments is discussed
in subsequent sections.

We realize LS-VAE and SL-VAE as amortized hierarchical VAEs, where we
apply conditional VAE to the dependent variable. The objective of LS-VAE as
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follows:

Lis = Eqvg,llogpo(x | 2)]=Dict. (a6 (2" | xV) [p (7)) (3.1)

Dt (g6 (2 | x,20) [po (2 )

where pg (z(s) \ z(l)) is the conditional prior of the latent sentence variable,
parameterized by 6. The conditional prior is learned from the data using stan-
dard feedforward neural networks.

Similarly, the objective of SL-VAE is as follows:

L51, = By, [log 20 (x | 2)]=Dice (40 (2 | ) [ () (3:2)

Dt (a5 (2| x,2) g (2 | 2))

The implementation consists of the sentence encoder ENC(S), the sentence
decoder ENC®) (not to be confused with the approximate posterior) encodes

the respective variables into hidden representations h(®) and h(®.

3.2.2 Training with I-VAE

Autoregressive VAEs are prone to posterior collapse (Appendix A), whose risk
of occurrence can be minimized by employing word dropouts (Bowman et al.,
2016). However, dropping autoregressive signals could cost deterioration of the
decoder performance. We propose an early-stopping technique, called I-VAE,
to mitigate posterior collapse without sacrificing the decoding power. I-VAE
exploits the fact that inference collapse occurs at the final phase of VAE train-
ing, after the KL-divergence term of the ELBO (Equation 2.3) is optimized and
can’t be further decreased without forgoing the encoder’s performance, which

can be measured using the Monte Carlo estimation of the mutual information

29 I =



MR SUBJ

Method

NLL MI KLD | NLL MI KLD
Vanilla VAE 239.93 0.69 0.00 | 27741 0.69 0.00
B-VAE
B = 0.1,anneal=10 240.48 0.69 0.00 | 275.86 0.69  0.00
B = 0.1,anneal=40 218.89 3.52 418 | 257.68 290 3.08
B = 0.1,anneal=100 | 215.74 4.68 7.56 | 258.69 4.81 9.84
B = 0.2,anneal=10 239.93 091 0.00 | 276.79 0.80 0.00
B = 0.2,anneal=40 240.46 0.70  0.00 | 274.52 0.77  0.00
B = 0.2,anneal=100 | 22295 087 0.65 | 259.04 0.73 0.63
B = 0.5,anneal=10 241.34 0.69 0.00 | 276.15 0.69 0.00
B = 0.5,anneal=40 237.88 0.69 0.00 | 277.15 0.69 0.00
B = 0.5,anneal=100 | 240.11 0.70 0.00 | 273.51 0.69 0.00
I-VAE
a=>500,=1e—3 | 122.84 4.76 8.33 | 132.60 4.71 7.37
a=1000,6=1e—3 | 176.04 4.80 11.65 | 187.22 4.82 9.93
a=2000,6=1e—3 | 222.28 4.80 12.99 | 227.35 4.82 12.14

Table 3.1: Training results of LS-VAE on the MR and SUBJ datasets.

between x and z (Cremer et al., 2018; He et al., 2019). When the mutual infor-

mation level drops below a certain threshold, the I-VAE algorithm terminates

the VAE training. The intuition is similar to (He et al., 2019), but we argue

that dedicated training of the encoder is unnecessary, as the encoder might not

be lagging depending on the nature of the data and the structure of the VAE.

The details of our approach is described in Appendix A.

In this subsection, we explore the effectiveness of our VAE training al-

gorithm on LS-VAE and SL-VAE. We measure the negative log-likelihood
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of predicted sentences, the conditional mutual information between x and
z®) under the approximate posterior, and the conditional KL-divergence term
Dy, (qd, (z(s) | X,Z(l)) Hpg (z(s) | z(l))) on the validation set. We do not report
the measurements on the latent label variable, as it is trivial to learn the pos-
terior. The results are shown in Table 3.1.

We compare our training algorithm with S-VAE (Burgess et al., 2018),
where the KL-divergence term is weighted by a hyperparameter S to control
the regularization of disentangled representation learning. We also apply KL-
divergence annealing to S-VAE as well. Of all the usual choices of 9 hyperpa-
rameter combinations in S-VAE, only two of the cases (22%) showed signs of
healthy training and the rest of them experienced posterior collapse (MI = 0,
KLD ~ 0). On the other hand, models trained using I-VAE stayed healthy
for an arbitrary choice of «, the KL-divergence annealing rate. NLL results of
I-VAE were much lower than that of 8-VAEs, while the conditional mutual in-
formation was higher than even the best peforming $-VAEs (4.80>4.68). This
is achieved all while KLD was maintained at a healthy level, signifying that the
I-VAEs models generate more realistic sentences while more efficiently encoding

them into the prior belief.

3.3 Experiments

In this section, we describe our experiments and present their results to show
that (1) our proposed solution for mitigating posterior collapse works for train-
ing generators in GDA, (2) the proposed VAE model for learning sentence-label
datasets is effective at generating novel and plausible sentence-label pairs, and
(3) to analyze the effects of various hyperparameter choices on the generation

capability of the model.
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Dataset N Nirain~ Nvalid  Ntest | K | p (’X(s) |)
MR 10,662 | 8,530 1,066 1,066 | 2 20.32
CR 3,770 | 3,016 377 377 2 18.58
SUBJ 10,000 | 8,000 1,000 1,000 | 2 23.13
MPQA | 10,603 | 8,603 1,000 1,000 | 2 | 3.06

Table 3.2: Dataset statistics for sentence classification tasks.

3.3.1 Datasets

To validate our methodology in the sentence classification task, we choose the
following four datasets as our testbed. The statistical summary of the datasets

is shown in Table 3.2.

e MR (Pang and Lee, 2005): The movie review dataset is a collection of
short sentences annotated with binary sentiment (positive, negative)
crawled from Rotten Tomatoes, a movie review aggregation website (Pang

and Lee, 2005). The domain of the movies is unrestricted.

e CR (Hu and Liu, 2006): This dataset contains a smaller number of single
sentences crawled from online product reviews (Hu and Liu, 2006). The
dataset contains binary sentiment annotations (positive, negative),
and the range of the products is limited to digital cameras, DVD players,

mp3 player and cellphones.

e SUBJ (Pang and Lee, 2004): This dataset contains a mixture of sub-
jective and objective single short sentences (Pang and Lee, 2004) anno-
tated with subjectivity tags. The subjective sentences were crawled from
the review section of Rotten Tomoatoes and the objective sentences were

crawled from plot summaries on the same website.

e MPQA (Wiebe et al., 2005): The MPQA dataset is a set of general-
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domain corpora with fine-grained sentiment annotations for opinion min-
ing (Wiebe et al., 2005). We only use human-annotated phrases for this
task, hence the average length of the sentences or phrases is much shorter

than that of the other three datasets (Table 3.2).

All datasets have been randomly split into training, validation and test sets
while preserving the class distribution in the dataset. Compared to performing
10-split cross-validation as in (Conneau and Kiela, 2018), pre-determined splits
enables us to perform large number of trials of data augmentation experiments
in a controlled and feasible manner for the test of statistical significance.

The datasets have been carefully chosen to diversify domains (CR - shopping
reviews, MPQA - general purpose), sentence lengths (SUBJ - 23.13, MPQA -
3.06) and target prediction schemes (sentiment polarity and subjectivity). All
of the datasets have been studied extensively in the past (Zhao et al., 2015;
Conneau and Kiela, 2018) for the sentence classification and sentiment analysis
tasks, hence they provide sturdy ground for comparing our results with previous

methods.

3.3.2 Experimental Settings

In this section, we describe the protocol for conducting GDA experiments for the
sentence classification task. The following protocol pertains the experimental
procedure for each hyperparameter setting of training a generative model and

obtaining samples from it.

1. Given three dataset splits Dirain, Dvalid, Ptest; We train a generative model
G on the training set Dipain = {(ng)’xgl)>, cee (X%S),xg))}, while vali-

dating the generative model against Dy,jq for our algorithm.

2. We use G to generate Ng sets of synthetic data samples DY, . .. ,DjVG using

different seeds. We employ ancestral sampling or approximate posterior
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sampling for this experiment'. We use Dipain as the empirical distribu-
tion of the dataset from which we sample x. During generation, we apply
the generation scaling factor v to control how explorative we want our
generator to be. Specifically, in our approaches, the approximate poste-
rior distribution for the sentence latent variable z(®) is modeled after a

parameterized Gaussian distribution:

a5 (2% | %) = N (16(x), 05(x)1)

Latent variables z(®) are then sampled from a non-biased scaled variant

of the distribution N (ug(x), vos(x)I).

3. For each synthetic dataset D;’, we combine it with the training set Dirain
to form an augmented dataset D. We train N¢ classifiers C on D]’ while
validating against Dy,jiq. The final classifier model is tested against Diegt
and evaluation results are obtained for each trial. Ng x N¢ classification
results are aggregated, and we conduct statistical significance test of dif-
ference between current results and the baseline classification results, in

which the classifiers are trained on the training set Dyain only.

Overall, (1) we train a single generator G, (2) sample N¢g sets of different
synthetic datasets from G, (3) train N¢ classifier C for each augmented dataset
and aggregate the results. Multiple runs are conducted to ensure that the results
account for variances in various steps of the pipeline. Figure 3.2 summarizes the

experimental protocol.

3.3.3 Implementation Details

The general architecture of our VAE models is as follows. The sentence encoder

is implemented using a stacked bidirectional LSTM cells of 2-layers with hidden

We explore different sampling strategies in Chapter 4.
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Figure 3.2: Experimental protocol for generative data augmentation in sentence

classification.

dimensions of 1024 and dropout probability of 0.2 (Srivastava et al., 2014).
We initialize the word embeddings with 840B 300d GloVe vectors (Pennington
et al., 2014) for both the generator and the classifier. The sentence deocder is a
single LSTM cell with hidden dimensions of 1024. The label encoder, decoder
and Gaussian predictors (for approximate posterior inference) are implemented
using 2-layer feedforward networks with dropout probability of 0.2 and are
applied with batch normalization (Ioffe and Szegedy, 2015). We use Gaussian
reparameterization trick (Kingma and Welling, 2013). Adam optimizer (Kingma
and Ba, 2014) is used to optimize all networks with the initial learning rate of
0.001. Mini-batch size is 128 for both the generator and the classifier. Models
were implemented on the PyTorch framework. Experiments were carried on a
mixture of Nvidia GTX1080 and Titan Xp GPUs. During the training of SL-
VAE models, we apply word dropout rate of 0.5 to the decoder during teacher-
forcing training (Bowman et al., 2016). Similar to the intuition of word dropout,
we also apply label dropout rate of 0.5 on the computation of the label posterior
to discourage the label decoder from relying on the teacher-forced information.

We choose BiLSTM-Max (Figure 4.2) as our baseline classifier architecture
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Accuracy

MR CR SUBJ MPQA

Method

Baseline (w/o GDA) | 76.62 78.54  92.12 85.85

LS-VAE
a=1000,8=1e—3 | 76.44 T77.62 9247 86.38
a=2000,8=3e—4|77.21 78.91 92.50 86.38

SL-VAE
a=1000,8=1le—-3 | 76.78 76.67 91.61 85.44
a=2000,8=3e—4| 76.85 77.54 91.72 85.46

Table 3.3: Comparison of GDA results between two candidate models for

sentence-label pair datasets.

for its simplicity and effectiveness. The model is known to perform reason-
ably well for many sentence classification and understanding tasks (Conneau
and Kiela, 2018). We perform standard machine learning protocol for training
classifiers: a classifier C is trained on a training set Diyain, While the training
progress is monitored by validating the model against the validation set Dyaiiq
every epoch. The best model is chosen based on the validation performance and
evaluated using the test set Diest. We employ the early stopping strategy where
the patience is 10 training epochs and the maximum training steps is 800,000,

which is reasonably tolerant for all datasets.

3.3.4 Data Augmentation Results

In this subsection, we conduct various GDA experiments to compare different
strategies to maximize the benefits of data augmentation. The first experiment
compares the two modeling approaches proposed in this chapter for sentence-

label pair generation (SL-VAE and LS-VAE). We compare the performance
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BiLSTM-Max

Dataset Accuracy pos/subj neg/obj

Precision Recall Precision Recall
MR 76.62 &= 1.57 | 73.79 £ 3.43 | 80.10 & 3.25 | 80.15 & 1.55 | 73.42 & 5.48
MR+ 77.21 + 1.36%| 76.69 + 3.62F| 76.03 + 4.79% | 78.22 + 2.49% | 78.30 + 5.50%
CR 78.54 = 1.06 | 78.23 £1.42 | 89.03 &+ 1.35 | 79.33 & 1.59 | 62.85 & 3.40
CR+ 78.91 + 0.23%| 78.98 + 1.59T| 88.50 &+ 2.67F | 79.23 + 2.77T | 64.57 + 4.45%
SUBJ 92.12 4 0.79 | 92.40 £ 1.62 | 92.35 £1.99 | 91.94 £ 1.87 | 91.88 + 2.00
SUBJ+ 92.50 + 0.57F| 92.90 + 0.837| 92.52 + 1.077| 92.11 + 1.00T| 92.47 + 0.97%
MPQA 85.85 4 1.22 | 83.27 £ 5.64 | 70.09 + 4.72 | 87.15 4+ 1.42 | 93.13 & 3.42
MPQA+ | 86.38 & 0.511| 84.84 + 2.797| 69.48 + 2.907 | 87.00 + 0.937 | 94.18 + 1.51%
fp<01 *p<o0.01

Table 3.4: Data augmentation results on sentence classification tasks using LS-

VAE.

of classifiers trained on datasets that are augmented by samples from SL-VAE
and those that are augmented by LS-VAE (Table 3.3). Different hyperparameter
settings were tested on the two models, and we found that LS-VAE performed
marginally better for all datasets on average. We conjecture that the higher
representation capacity possessed by LS-VAE allows it to have a slight edge
over SL-VAE in GDA.

We present the effect of augmenting datasets using the generative latent
variable model in the sentence classification task (Table 3.4). We use BiLSTM-
Max (Figure 4.2) as the baseline classifier odel, keeping the hyperparameter set-
tings constant across all experiments. We report classifier performances through
the accuracy, along with the precision and the recall of each of the binary la-
bels (subj/obj for the SUBJ dataset and pos/neg for others). The results are
aggregated (mean and standard deviation) after being run multiple times as
described in Section 3.3.2. We use + to denote the corresponding datasets that
have been augmented with our proposed model for modeling sentence annota-

tion datasets, LS-VAE.
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Label | |V| | H(w) | Perplexity

pos 11,100 | 6.835 930.2
neg | 11,325 | 6.856 949.5

Table 3.5: 1-gram statistics of the MR dataset.

The results on the four datasets show that the generative data augmenta-
tion technique is beneficial, albeit with some varying results among the tasks.
We observe three major improvements. First, the overall mean accuracy im-
proved in all of the tasks with statistical significance p < 0.1, except for the
CR dataset. We conjecture that the marginal improvement in the CR dataset is
due to sparseness, causing the generative data augmentation to exacerbate the
empirical bias in the dataset. Second, the classification performances stabilize
with the data-augmented datasets, exhibiting less variance than the classifiers
trained on the non-augmented datasets. In all datasets, the variance of the
classifier accuracies have decreased when trained on the augmented datasets,
with the smallest variance observed in the augmented CR dataset (0.23). The
improvement in both bias and variance indicates that the classifiers are trained
more optimally when they are subject to data-side regularization. Third, the
detailed analysis of the per-label precision and recall scores shows that data
regularization essentially normalizes the performance across all labels. For ex-
ample, the MR dataset without data augmentation has a bias towards the
postiive-sentiment samples. The bias comes from the asymmetry of the lan-
guage distribution between the two class labels: the word-level perplexity of
neg-labeled sentences is higher than that of pos-labeled sentences (Table 3.5).
Having applied generative data augmentation, the precision and recall scores
across all labels have normalized, improving the overall performance of the re-

sulting classification models.
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Figure 3.3: GDA results with varying hyperparameter choices for our algorithm

3.3.5 Ablation Studies

In this section, we explore the effects of different choices of hyperparameter
settings have on the GDA results.

We vary the KL-divergence annealing period («), the tolerance margin (),
and the posterior sampling scale (7) by small margins and plot the GDA re-
sults in Figure 3.3. First, we observe that the sampling scale correlates with
the data-augmented classifier performance, except for an edge case where
a = 2000,8 = le — 4. This is likely due to the high variance nature of the
generative data augmentation process. Despite some irregularities in results,
the plot of the average of each scale factor (solid line) shows that the two fac-
tors are postiively correlated (Pearson’s correlation coefficient 0.959, p < 0.01).
This finding supports our hypothesis that the positive effect on the performance
of the classifier is attributed to the novel samples discovered through the ex-
ploratory power of posterior sampling. As the scaling factor increases above the
standard rate (v > 1.0), the model becomes more exploratory, increasing the

chance to extract novel samples. When the scaling factor is below the standard
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Anchor x

Generated Sample x’

1 i have no complaints with this player | i have no problems with this player

2 i’ ve been incredibly happy with this | i’ m really happy with this purchase
camera

3 this camera is bulletproof the phone is awesome

4 it fits in your pocket it looks sleek and modern

5 this dvd player is basically junk the dvd player is not work

6 it is made of plastic this is ridiculous

Table 3.6: Generation samples from LS-VAE trained on the CR dataset using

ancestral sampling (differences highlighted in red).

rate (7 < 1.0), the model is not able to improve the performance of the classi-
fier above the baseline (76.6), as little novel samples are explorable within the
safe bounds of the predicted variance. On the contrary, the performance drops
further as we decrease the scaling factor below 1.0, which can be explained
by data distribution disruption. Data samples which exist only in the space
between « and 1.0 will never be generated, causing a shift in the augmented
data distribution without any compensation through the introduction of novel

instances.

3.3.6 Qualitative Analysis

Three qualitative experiments are conducted to visualize the generation qual-
ity of our approach, posterior sampling, z-interpolation and label inversion.
These experiments are designed to demonstrate various aspects of our model’s
generation capability, such as grammaticality, accuracy and disentangled rep-

resentation learning.

Posterior Sampling

In this experiment, we examine the quality of the generated samples that are

obtained from ancestral sampling on a well-trained LS-VAE. We show that the
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model trained with our algorithm applies meaning-preserving transformation
that are learned from the dataset without explicit supervision. We find several
nonlinear transformation strategies that the model has learned to adopt. The
posterior sampling is conducted as follows.

Specifically, we choose an anchor data point from the dataset distribution:
X ~ pg(x), where py is the empirical distribution. Then, we sample a set of
latent variable z from the encoded distribution of x: z ~ ¢4(z | x). We then

obtain a generated sample x’ that is most probable in the model posterior:

x' = arg max py(x | z) (3.3)
X

Table 3.6 shows the sampling results. The results show that in terms of gen-
eration quality, the VAE is able to generate grammatically accurate samples.
However, there were cases, such as the fifth example, that introduced subtle
grammatical errors in the synthetic samples, but such noises had limited in-
fluence in classifier performances as seen in the data augmentation experients
(Table 3.4).

Few observations are made from the samples in Table 3.6.

1. The VAE model has effectively learned to perform word-level substitution
without much variation at the sentence-level semantics. As seen in the
first example, the model has implicitly learned the similarity of words
with overlapping contextual semantics, such as complaint and problem,

allowing them to be generated interchangably.

2. The model has also learned to perform phrase-level substitution, allowing

more complex phrases to be paraphrased, as evident in examples 2 and 4.

3. The model has learned to exhibit certain level of awareness in higher-level

compositionality, such as the understanding of logical implication required
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n/N Decoded Sentence Decoded Label
0% a film of quiet delicacy and squalor pos
20% a triumph of astonishing delicacy and force pos
40% a sharp and engrossing character study pos
60% an intimate and a resonant work pos
80% smart edges and an engaging and a film pos
100% | smart , fashioned , and a film that delivers a feast pos

Table 3.7: z-interpolation between two data samples of the same label (pos),

using LS-VAE trained on the MR dataset.

to generate paraphrases in example 4. The combination of these charac-
teristics shown by the VAE model has contributed to the performance-

boosting effect in generative data augmentation.

z-interpolation

Visualizing decoder samples from a linear interpolation of two points in the
z-space is a popular method for showcasing the successful training of VAEs
(Bowman et al., 2016). Given two data sample x; and x5, we map the data
points onto the latent variable space using the encoder g4 to obtain z; and z,.
Multiple equidistant samples z, ..., zly are selected from the linear interpolation
between the two points: z, = z; + n*3g% . Likelihood-maximizing samples
x),...,X)y are chosen from the model posteriors given the z samples (Equation
3.3).

We showcase two interpolation results in Table 3.7 and Table 3.8. In the first
experiment, we fix the sentiment of the sentences to positive such that the
gradual differences between the two samples are limited to linguistic features.

Results in Table 3.7 show that our model has effectively learned to encode and

decode various levels of linguistic features into the latent variable space. Sub-
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n/N Decoded Sentence Decoded Label
0% the film is uniformly good pos
20% the movie is uniformly good pos
40% the film is worth seeing pos
60% this movie a lot neg
80% i hated every movie neg
100% | i hated every minute of the film neg

Table 3.8: z-interpolation between two data samples of opposite labels using

LS-VAE trained on the MR dataset.

stitutions of words with similar contextual meanings are observed between two
adjacent steps. However, as we further move along the interpolation lineage,
larger differences in syntactic and semantic structures of the sentences are ob-
served. These observations suggest that the model is capable of generalizing

different levels of linguistic variations into the latent space z(%).

Label Inversion

We show that our model is able to disentangle linguistic representations into
components that are relevant to the annotation and those that are not, en-
abling the model to perform bidirectional style transfer between the annotation
classes. For this experiment, we encode a sentence and a label just as we did
for the posterior sampling experiments, except that the encoded label is the
complement of the original corresponding label. We decode a sample from the
encoded z and compare it with the original sentence to observe any changes.
If our model learned to represent intended information in the respective latent
variables z(®) and z(), only the linguistic features should be encoded into z(*)
and the annotation-related features (sentiment etc.) should be encoded into

z() and therefore, ideally, the decoded sample from aforementioned z should
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Original Sentence x(*) x(®) Inverted Sentence x(*)’ —x ()

1 what a great film pos nothing about it fits neg

2 | a warm, funny, engaging film | pos | a bland, reluctant, thumbs down | neg

3 too silly to take seriously neg very very funny pos

little more than a worth catching as providing
4 neg pos

well mounted history lesson some old fashioned spooks

Table 3.9: Label-inverted samples from LS-VAE trained on the MR dataset

be a sentence with a similar syntactic structure with the opposite polarity, for
example.

Specifically, let x = (X(S),X(l)) be the data sample. We use the encoder
¢p to obtain the distribution of the latent variable representations of x' =
(X(S), _|X(l)>, where —x() is the inverted label of x(®: qg (z(s),z(l) \ x(), —|x(l)>.
We take the mean of the approximate posterior distribution and decode sam-
ples from the model posterior given the mean using Equation 3.3. The results
are shown in Table 3.9. The examples demonstrate that the model has learned
to distinguish annotation-specific and general linguistic features that are or-
thogonal to each other. Those features are represented using the dedicated
latent variables x(®) and x(). For instance, the original syntactic structure of
the original sentence a warm, funny, engaging film is nearly preserved in the
inverted sentence a bland, reluctant, thumbs down, while the positive adjectives
have been transformed to equivalent terms in the opposite polarity. As another
example, example 4 demonstrates that the model is able to recognize sentiment-
neutral concepts such as the state of being old from the original word history,
as evident from the preservation of the meaning in the inverted sentence (old

fashioned spooks).

44 I =



3.4 Summary

In this chapter, we have taken a dive at the underlying mechanisms in training
behaviors of VAEs and discussed the limitations of VAE training techniques in
the current literature. To exploit our findings, we proposed I-VAE as an attempt
to standardize VAE training.

In order to demonstrate that our training algorithm is effective, we not
only conduct intrinsic evaluation, in which the training statistics of the VAE
are examined, we also conduct extrinsic evaluation on downstream tasks. For
the downstream tasks, we introduce the task of data-augmenting datasets for
sentence classification. We also introduce LS-VAE, a architecture for modeling
sentence-label pairs. Through statistically reliable experiments, we show that
LS-VAE trained using [-VAE algorithm boosts the classification performance
on four sentence classification tasks. We have also presented some interesting
qualitative results that suggest other uses for our generative model, such as
conditional generation and style transfer.

From this study we conclude that not only training VAEs using I-VAE
is effective, but generative data augmentation for sentence classification is an
effective data regularization strategy.

In the subsequent chapters, we explore whether generative data augmenta-
tion can be effective even for other NLP tasks, namely spoken language under-

standing and dialogue state tracking.
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Chapter 4

Multi-task Learning: Spoken Language Un-

derstanding

In this chapter, we explore the feasibiilty of performing zero-shot data augmen-
tation for the spoken language understanding task using an end-to-end latent
variable model that takes advantages of recent advances in representation learn-
ing and text generation. As spoken language undertanding requires the joint
learning of intent classification and sequence labeling, the success in applying
generative data augmentation for the task demonstrates the feasibility of the

data augmentation technique in multi-task settings.

4.1 Introduction

Spoken language understanding (SLU) in current literature refers to the study
of models that parse spoken queries into semantic frames. Semantic frames
contain pieces of semantic units that best represent the speaker’s intentions
and are essential for the development of human-machine interfaces, such as
virtual assistants.

Scarcity of linguistic resources has been a recurring issue in many NLP
tasks such as representation learning (Al-Rfou et al., 2013), neural machine
translation (NMT) (Zoph et al., 2016), and SLU (Kurata et al., 2016a). The
issue is especially prominent in SLU, because creating manually annotated SLU

datasets is costly but the domain space that might require new labeled datasets
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is near infinite.

Even for domains with existing datasets, they might suffer from the data
sparsity issue, which have long been plaguing many NLP tasks that require
annotated linguistic datasets (Lai et al., 2015). For example, most SLU datasets
are not large enough cover all possible data label pairs. Furthermore, biased data
collection methods could exacerbate the issue (Torralba and Efros, 2011).

Recent years, there have been significant advances in variational autoen-
coders (VAE) (Kingma and Welling, 2013) and other latent variable models
for textual generation (Serban et al., 2017; Yu et al., 2017; Hu et al., 2017; Li
et al., 2017), prompting investigations into the possibility of improving model
performances through generative data augmentation (Kafle et al., 2017; Kurata
et al., 2016a; Hou et al., 2018).

In this chapter, we propose a generative model specialized in the genera-
tion of SLU datasets. Finally, we wish to demonstrate the effectiveness of our
approach through various experiments. In essence, our main contributions are

two folds:

1. A Novel Model for Labeled Language Generation: We propose a
novel generative model for jointly synthesizing spoken utterances and their
semantic annotations (slot labels and intents). We show that the synthetic
samples generated from the model are not only natural and accurately
annotated, but they improve SLU performances by a significant margin
when used in the generative data augmentation framework. We also show

that our model is better than the previous work (Kurata et al., 2016a).

2. Substantiation with Extensive Experimentation: We substantiate
the general benefits of generative data augmentation with experiments
and statistical testing on various SLU models and datasets. Results show

that our approach produces extremely competitive performances for exist-
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ing SLU models in the ATIS dataset. Our ablation studies also bring some

important insights such as the optimal synthetic dataset size to light.

4.2 Related Work

The SLU task is one of more mature research areas in NLP. Many works have
focused on exploring neural architectures for the SLU task. Plain RNNs and
LSTMs were first explored in (Mesnil et al., 2015; Yao et al., 2014). (Kurata
et al., 2016b) proposed sequence-to-sequence (Seq2Seq) models. Hybrid models
between RNNs and CRF's were explored in (Huang et al., 2015). Joint language
understanding models that jointly predict slot labels and intents gained signifi-
cant traction since they had been first proposed in (Guo et al., 2014; Goo et al.,
2018). Some works focused on translating advances in other NLP areas to the

SLU task (liu, 2016).

4.3 Model Description

In this section, we describe our generative data augmentation model and the
underlying framework in detail.

4.3.1 Framework Formulation

We begin with some notations, then we formulate the overall generative data
augmentation framework for the spoken language understanding task.
Notations

An utterance w is a sequence of words (wq, ..., wr;), where T is the length of
the utterance. For each utterance in a labeled dataset, an equally-long semantic

slot sequence s = (si,...,s7) exists such that s; annotates the corresponding
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word w;. The intent class of the utterance is denoted by y. A fully labeled lan-
guage understanding dataset D is a collection of utterances and their respective
annotations {(w1,81,v1), ..., (Wn,Sn,Yn)}, where n is the size of the dataset. A
data sample in D is denoted by x = (w, s, y). The set of all utterances present
in D is denoted by D,, = {w1, ..., wy}. Similarly, the set of slot label sequences

and intent classes are denoted by Dy and D,,.

Spoken Language Understanding

A spoken language understanding model is a discriminative model S fitted on
labeled SLU datasets. Specifically, let ¥ to denote parameters of the prediction

model. Given a training sample (w, s, y), the training objective is as follows:

Lry (Y;w,s,y) = —logpy (s,y|w). (4.1)

Given an utterance w, predictions are made by finding the slot la-
bel sequence § and the intent class ¢ that maximize the loglikelihood:
(8,9) = argmaxg , log py, (s, y|w). For non-joint SLU models, py is factorizable:
P (8,y|W) = Dy (s|W) py (y|w). In recent years, joint language understanding
has become a popular approach, as studies show a synergetic effect of jointly
training slot filling and intent identification (Guo et al., 2014; Chen et al.,
2016b).

4.3.2 Joint Generative Model

In this subsection, we describe our generative model in detail. We begin with
a standard VAE (Kingma and Welling, 2013) applied to utterances, then we

extend the model by allowing it to generate other labels in a joint fashion.
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Standard VAE

VAEs are latent variable models applied with amortized variational inference.
Let 6 be the parameters of the generator network (i.e. the decoder network), and
let ¢ be the parameters of the recognition network (i.e. the encoder network).
Specifically in the case of utterance learning, the goal is to maximize the log
likelihood of sample utterances w in the dataset logp (w) = log [ p (w,z) dz.
However, since the marginalization is computationally intractable, we introduce
a proxy network gy (z|w) and subsequently minimize a training objective based
on ELBO (Equation 2.3).

In Equation 2.3, the proxy distribution g4 is kept close to the prior p(z),
which we assume to be the standard multivariate Gaussian. Since the KL-
divergence term is always positive, Ly 4g is the upper bound for the reconstruc-
tion error under the particular choice of a proxy distribution g4. The proposed
generative model is based on VRAEs, in which the posterior of a sequence
factorizes over sequence elements (i.e. words) based on the Markov Chain as-
sumption: pp (w|z) = [1—; po (wi|wy, ..., w;_1,2). VAEs can be optimized us-
ing gradient-descent methods with the reparameterization trick (Kingma and

Welling, 2013).

The Sampling Problem

Given the parameters 0p and ¢p that are optimized for all w € D,,, our goal
is to sample plausible utterances w from the distribution of w believed by the

model:

W~ Do o, (W) = [ oy (W) Do (2) 2 (42)
As evident in Equation 4.2, the marginal likelihood estimation requires us

to infer the marginal probability of the latent variable py,, 4, (z), which can be

estimated by marginalizing the joint probability from the recognition network.
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Figure 4.1: Joint language understanding variational autoencoder (JLUVA).
The VAE model consists of a BiLSTM-Max encoder and three uni-directional
decoders. Note that the fully connected layers and embedding layers are omitted

for clarity.

Pop.ép (2) = Bwrp(w) (49 (2[W)] (4.3)

However, Equation 4.3 cannot be solved analytically, as the true distribution
of w is unknown. Hence, some form of approximation is required to sample
utterances from the latent variable model. The approximation approach will
likely have an impact on the quality of generated utterances, thereby determine
the effect of data augmentation. Here, we describe two options.

The first is to approximate the marginal probability of the latent variable
with the prior p(z), the standard multivariate Gaussian. However, this naive
approximation will likely yield homogeneous and uninteresting utterances due
to over-simplication of the latent variable space. In real world scenarios, the
KLD loss term in Equation 2.3 is still large after convergence.

Alternatively, the other option is to approximate using the Monte Carlo
method. Under the Monte Carlo approach (Algorithm 1), the marginal like-

lihood is calculated deterministically for each utterance w sampled from the
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input : a sufficiently large number m

given :D,, 0, ¢

output: synthetic utterance list U

initialize U as an empty list;

while U has less than m samples do

sample a real utterance w from D,,;

estimate the mean z of the posterior g, (z|w);
sample w from the likelihood py (W|Z);

append W to U;

end

return U
Algorithm 1: Monte Carlo posterior sampling.

dataset D. According to the law of large numbers, the marginal likelihood
Pop.ép (W) converges to the empirical mean, thereby providing an unbiased

distribution for sampling w.

Exploratory Sampling

In our general framework for GDA, remind that the sampling method is required
to be exploratory, such that the biases in datasets are counteracted. translating
to better performances in resulting models. Hence, an ideal exploratory sam-
pling approach is unbiased but has increased sampling variance. Intuitively, we
can sample the latent variable z from the Gaussian encoded by the recognizer in
place of analytically estimating the mean in Algorithm 1. Suppose that g and
o are mean and standard deviation vectors encoded by the recognizer. Then we
sample z from N (pu (W), \s - o (w)), where the scaling hyperparameter Ay con-
trols the level of exploration exhibited by the generator. This unbiased empirical

estimation of the posterior helps generate realistic but more varied utterances.

52 I =



Dataset #Splits Train Val  Test

ATIS-small 35 127 - 128 500 893
ATIS-medium 9 497 - 498 500 893
ATIS 1 4,478 500 893
Snips 1 13,084 700 700
MIT Movie Eng 1 8,798 977 2,443
MIT Movie Trivia 1 7,035 781 1,953
MIT Restaurant 1 6,894 766 1,521

Table 4.1: SLU Dataset statistics.

Joint Language Understanding VAE

Starting from a VAE for encoding and decoding utterances, Joint Language
Understanding VAE (JLUVA) extends the model by predicting slot labels and
intent classes. The generation of slot labels and intents are conditioned on the
latent variable z and the generated utterance w (Figure 4.1). The benefits of
having conditional dependence on z during labeling is documented in (Kurata
et al., 2016b). The modified training objective for the language understanding

task is as follows.

Lru (¢a YW, s, y) = _]Ez~q¢ [log Dy (S, y|VAV7 Z)] (4'4)

The joint training objective of the entire model is specified in terms of the
training objective of the VAE component (Equation 2.3) and the negative log-

likelihood of the discriminatory component (Equation 4.4):
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Slot Filling (F1)

Model + Sampling Approach Small  Med. Full
Baseline (No Augmentation) 72.57F  88.28% 95.34
Encoder-Decoder + Additive” 74.791  89.13%  95.20
JLUVA + Additive (Ours) 74.14%  89.13%  95.40

JLUVA + Standard Gaussian (Ours) 70.72%  86.90% 94.91%

JLUVA + Posterior (Ours) 74.92 89.27 95.55

" (Kurata et al., 2016a) Tp<01 fp<o0.01

Table 4.2: Data scarcity results of JLUVA on the ATIS dataset (Slot Filling).

Intent (F1)

Model + Sampling Approach Small  Med. Full
Baseline (No Augmentation) 82.65 90.59T 97.21
JLUVA + Additive (Ours) 83.46 90.97 97.04

JLUVA + Standard Gaussian (Ours) 78.67F  86.90% 96.90

JLUVA + Posterior (Ours) 83.65 90.95 97.24

* (Kurata et al., 2016a) Tp <0.1 ip < 0.01

Table 4.3: Data scarcity results of JLUVA on the ATIS dataset (Intent Classi-

fication).
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Model + Sampling Approach

Semantic Frame (Acc.)

Small Med. Full

Baseline (No Augmentation)

JLUVA + Additive (Ours)

JLUVA + Posterior (Ours)

35.09F  65.18% 85.95
38.58 66.75 85.81

JLUVA + Standard Gaussian (Ours) 32.46% 61.12% 84.62F

39.43 67.05 86.33

* T
(Kurata et al., 2016a) p < 0.

1

tp<o.01

Table 4.4: Data scarcity results of JLUVA on the ATIS dataset (Semantic

Frame).

L(0,¢,9;w,s,y) =Dk (g4 (2|w)]|pe (z|w))

- IEz~q¢ [Ingg (W‘Z)]

- IEzwqd) [logpdi (Sa y|VAV, Z)]

(4.5)

We obtain the optimal parameters 6%, ¢*,¢* by minimizing Equation 4.5

(i.e. argming 4, £) with respect to a real dataset D. During the data generation

process, we sample z* from an approximated prior p* (z) which depends on the

approximation strategy (e.g. posterior sampling). Then we perform inference

on the posterior network py (w|z*) to estimate the language distribution. A

synthetic utterance w is sampled from said distribution and is used to infer the

slot label and intent distribution from the relevant networks, i.e. p (s, y|z, w).

The most probable § and ¢ are combined with W to form a generated sample

set (W, 8, 7). This generation process is repeated until sufficient synthetic data

samples are collected.
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4.4

Experiments

In this section, we outline the design, execution, results and analysis of all

experiments pertaining to testing the effectiveness of our GDA approach.

4.4.1 Datasets

In this paper, we carry out experiments on the following language understanding

datasets.

ATIS: Airline Travel Information System (ATIS) (Hemphill et al., 1990)
is a representative dataset in the SLU task, providing well-founded com-

parative environment for our experiments.

Snips: The snips dataset is an open source virtual-assistant corpus. The
dataset contains user queries from various domains such as manipulating

playlists or booking restaurants.

MIT Restaurant (MR): This single-domain dataset specializes in spo-

ken queries related to booking restaurants.

MIT Movie: The MIT movie corpus consists of two single-domain
datasets: the movie eng (ME) and movie trivia (MT) datasets. While
both datasets contain queries about film information, the trivia queries

are more complex and specific.

All of the datasets are annotated with slot labels and intent classes except

the MIT datasets. The detailed statistics of each dataset are shown in Table

4.1. In order to simulate a data scarce environment (similar to the experimental

design proposed in (Chen et al., 2016b)), we randomly chunk the ATIS training

set into equal-sized smaller splits. For the small dataset the training set is

chunked into 35 pieces, and for the medium dataset it is chunked into 9 pieces.
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The sizes of the small and medium training splits approximately correspond

those mentioned in the previous work (Chen et al., 2016b).

4.4.2 Experimental Settings

Here, we describe the methodological and implementation details for testing

the GDA approach under the framework.

General Experimental Flow

Since we observe a high variance in performance gains among different runs
of the same generative model (e.g. Figure 4.5), we need to approach the ex-
perimental designs with a more conservative stance. The general experimental

methodology is as follows.

e Ng identical generative models are trained with different initial seeds on

the same training split.

e m utterance samples are drawn from each model to create Ng augmented

datasets Dj, ..., §Vc;'

e Ny, identical SLU models are train for each augmented dataset D’. All
models are validated against the evaluation results on the same validation

split. Best model from each SLU model is evaluated on the test set.

e We collect the statistics of all Ng x Np, results and perform comparative

analyses.

Implementation Details

For both models, the word (W), slot label (W), and intent (IV,) embeddings
have dimensions of 300, 200, and 100 respectively and were trained jointly with
the network. W,, had been initialized with the GloVe vectors (Pennington et al.,
2014).
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Generative Model

The encoder network, a single-layer BILSTM-Max model (Conneau et al., 2017),
encodes the word embeddings of word tokens w; € w in both directions and
produces the final hidden state by applying max-pooling-over-time on combined
encoder hidden outputs hge), cees hg? ) (1024 hidden dimensions). The decoders
are uni-directional single-layer LSTMs with the same hidden dimensions (1024).
Let hgw), hgs), and hiy) be the hidden outputs of word, slot label, and intent
decoders at time step ¢ respectively. We perform dot products between respec-
tive embeddings and the hidden outputs to obtain logits (e.g. ogw) = thgw)
etc.). The likelihood of each token at each time step t is obtained by applying

the softmax on the logits:

(w)

eot,wt
b (’LUt‘W<t,Z) = —O(w)
Zw’EVw e t,aw!

Where V,, is the vocabulary set of utterance words. During generation, the
beam search algorithm is used to search for the most likely sequence candidates
using the conditional token distributions. The beam search size was set to 15 and
the utterances were sampled from top-1 (k;) candidate(s) to reduce variance.
Exploratory hyperparameter A\; was 0.18.

To feasibly train the model, we employ the teacher-forcing strategy, in which
the LU network is trained on the ground truth utterance w instead of the
predicted sequence w. We applied KLD annealing and the decoder word dropout
(Bowman et al., 2016). KLD annealing rate (k) was 0.03 and word dropout
rate p,, was 0.5. We used Adam (Kingma and Ba, 2014) optimizer with 0.001

initial learning rate. The code is available on github (kaniblu/ludus-jluva).
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N3

w1 W2 W3 W4 Ws

Figure 4.2: BILSTM-Max architecture for joint language understanding

SLU Models

For the baseline SLU model, we implemented a relatively simple BiLSTM model
(Figure 4.2), used as the control SLU model in the data scarcity and ablation
studies. A bidirectional LSTM cell encodes an utterance into a fixed size rep-
resentation h. A fully connected layer translates the hidden outputs h; of the
BiLSTM to slot scores for all time step ¢. The softmax function is applied to the
logits to produce p (s¢|w<¢). The final hidden representation h of the input ut-
terance is obtained by applying max-pooling-over-time on all hidden outputs.
Another fully connected layer and a softmax function maps h; to the intent
distribution p (y|w). This simple baseline was able to achieve 95.32 in the slot
filling fl-score.

For other SLU models, we consider the slot-gated SLU model (Goo et al.,
2018), which incorporates the attention and the gating mechanism into the LU
network. We found the model suitable for our task, as the model is reasonably
complex and distinctive from our simple baseline. Furthermore, the code for
running the model is publicly available and the results are readily reproducible.
We were able to obtain similar or even better results on our environment (Table
4.6). This difference might be due to differing data preprocessing methods. SLU
performance is measure by (1) slot filling fl-score (evaluated using the conlleval
perl script), (2) intent identification f1-sore, and (3) semantic frame formulation.

fl-score measures the correctness of predicted slot labels.

F '\-.'.“:_1-]5 -:i o=
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Slot-Gated (Full)

Slot-Gated (Intent)

Dataset | Slot Intent SF Slot Intent SF
ATIS 95.3F  94.9% 84.3%| 95.4% 94.7F 835!
ATIS+ | 95.7 95.6 85.4|95.6 95.6 84.8
Snips 8821 97.0 74.9%| 88.2 96.9 746
Snips+ | 89.3 97.3 76.4 | 88.3 96.7 74.6
ME 8221 - 63.67| 81.8% - 62.1%
ME+ 82.9 - 64.5 | 82.8 - 63.3
MT 63.51 - 24.0t| 62.87 - 24 4%
MT+ | 65.7 - 27.4 | 65.0 - 27.5
MR 72.61 - 52.8T| 72.18 - 51.8¢
MR+ | 73.0 - 53.4 | 73.0 - 52.9
tp<01 ¥p<o.01

Table 4.5: Mean data augmentation results on various SLU tasks tested using

the slot-gated (Goo et al., 2018) SLU models
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Dataset Model Slot (F1) Intent (F1)

ATIS JLUVA 94.44 97.09
ATIS BiLSTM (Baseline) 95.34 97.21
ATIS Deep LSTM? 95.66 -

ATIS Slot-Gated (Full)>4 95.66 96.08
ATIS Att. Encoder-Decoder®  95.87 98.43
ATIS Att. BiIRNN¢ 95.98 98.21
ATIS+ BILSTM (Baseline) 95.75 97.54
ATIS+  Slot-Gated (Full)>4 96.04 96.75

& (Kurata et al., 2016b) b (Goo et al., 2018) € (liu, 2016)

d run on our environment

Table 4.6: Comparisons of the best slot filling and intent detection results for
the ATIS dataset.

4.4.3 Generative Data Augmentation Results

In this section, we describe and present two experiments that test the GDA
approach under variety of experimental settings: data scarce scenarios, varied

SLU models, and varied datasets.

Data Scarce Scenario

For the first experiment, we test whether our GDA approach performs better
than the previous work 1) under the regular condition (full datasets) 2) and
data scarce scenarios. We compare our model to a deterministic encoder-decoder
model (Seq2Seq) proposed in (Kurata et al., 2016a). The two decoders of the
model learn to decode utterances and slot labels from an encoded representation
of the utterance. In an attempt to reproduce the results of the original models,

we restrict the model from generating intents. However, we could still observe
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some discrepancies between our results and the results reported in the paper
(Table 4.4), possibly due to minor differences in experimental protocols.

For the full dataset, we conduct the standard experiments with Ng =
3,N;, = 3 and m = 10000, synthetic dataset size. For small and medium
datasets, each experiment is repeated Ny = 3 times for all Nr training splits.
The final result is aggregated from Np x N runs (i.e. 105 runs for ATTS-small
and 27 runs for ATIS-medium). Results are presented in 4.4. We use the baseline
BiLSTM model as the control SLU model. Results are averaged over multiple
runs and compared to the best of our approaches (JLUVA + Posterior). The
differences are tested for statistical significance.

According to the results, our approach performed better than all other base-
lines at the statistically significant level for small and medium datasets. The
performance gain of our approach diminishes for the full dataset. This is likely
due to the homogeneous nature of the ATIS dataset, leaving little room for
the GDA to explore. Although we could not achieve statistically significant im-
provement on the full dataset, we note that our approach never experiences

performance degradation for any dataset size and evaluation measure.

GDA on Other SLU Models and Datasets

We test GDA with various combinations of SLU models and datasets (Table
4.5). Dataset that are augmented using our proposed generative model is de-
noted by 4. The results have been aggregated and were tested for statistical
significance. There were statistically significant improvements in language un-
derstanding performances across most datasets and SLU models. Comparing
these results with the data scarcity results in Table 4.4, we observe two trends:
(1) the more difficult the dataset is to model (e.g. MIT Movie Trivia) and
(2) the more expressive the SLU model, the more drastic the improvements

are. For example, the improvement rate between ATIS and ATIS+ for full

62 I =



attention-based Slot-Gated model was only 0.39%, whereas the improvement
rate increased nearly ten-fold (3.54%) between MIT Movie Eng and MIT Movie
Eng+ for the same model.

We also observe a positive correlation between model complexity and per-
formance gains. For example, the performance improvement was more signif-
icant for the slot-gated model than the simple baseline model for the ATIS
dataset. This suggests that the performance-boosting benefits from synthetic
datasets can be more easily captured by more expressive models. This is also
supported by generally better performances achieved by the slot-gated full at-

tention model, as the full attention variant is the more complex one.

4.4.4 Comparison to Other State-of-the-art Results

In this study, we compare the best LU performance achieved by our generative
approach on the ATIS task to other state-of-the-art results in literature (Table
4.6). We chose the best performing run out of all runs carried out from the
previous experiments (Ng = 3, N = 3,m = 10000) and report its results
in Table 4.6. In the best case, our approach was able to boost the slot filling
performance for the slot-gated (full) model by 0.38. Remarkably, our best results
outpeformed more complex models, further supporting the idea of data-centric
regularization. We also evaluate the SLU performance of JLUVA by performing
deterministic inference (i.e. z = p). We find that the LU performance by itself
is not competitive. This eliminates the possibility that the performance gains
in our approach are attributed to JLUVA being a more expressive model and

therefore acting as a teacher network.

4.4.5 Ablation Studies

In the ablation studies, we carry out two separate comparative experiments on

variations of our generative model.
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Sampling Methods

The following sampling approaches are considered.

e Monte-Carlo Posterior Sampling (Ours): z is sampled from the em-
pirical expectation of the model, which is estimated by inferring posteriors

from random utterance samples. (Algorithm 1)

e Standard Gaussian: z is sampled from the assumed prior, the standard

multivariate Gaussian.

e Additive Sampling: First, the latent representation zy, of a random
utterance w is sampled. Then z, is disturbed by a perturbation vector
a ~ U (—0.2,0.2). It was proposed for the deterministic model in (Kurata
et al., 2016a).

The results in Table 4.4 confirm that exploratory Monte-Carlo sampling
based on scaled posterior distribution (As = 0.18) provides the greatest ben-
efit to the language understanding models for the ATIS and the data-scarce
datasets. We note that the additive perturbation, despite its simplicity in na-
ture, performs reasonably well compared to our approach. This suggests the
exploratory sampling approaches are not only limited to Gaussian distribu-
tions. On the other hand, over-simplified and biased approximation of the prior
such as standard multivariate Gaussian, could rather cause performance degra-
dation. This also highlights the fact that the choice of sampling approach has
a significant impact on the generative quality and thereby the resulting perfor-

mances.

Synthetic Data Ratio

To gain further insights into generative DA, we conduct regressional experi-

ments to expose the underlying relationship between the relative synthetic data
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Improvement over Baseline (%)

o1 1 10 100
Synthetic to Real Data Ratio (r)
Figure 4.3: Plotting of data augmentation benefits on intent classification over

synthetic data to real data ratio.

size and the performance improvements.

Let m be the size of the synthetic dataset used to augment the origi-
nal dataset of size n. The synthetic to real data ratio r is m/n. For each
run, we conduct the standard experiment procedure (Ng = 10, Ny = 5)
on a ATIS-small dataset with JLUVA as the generative model and the sim-
ple BILSTM as the SLU model. We repeat the experiments for all r €
{0.08,0.78,1.56,3.90, 7.81, 15.6, 39.06, 78.13}.

The impact of synthetic data to real data ratio on the relative improvements
in SLU performance are shown in Figures 4.3 to 4.5. In the figures, sashed
horizontal lines illustrate the level at which the impact on the performance is
no longer positive. The baseline is the SLU performance achieved without an
augmenting dataset. For each box plot, the center line denotes u, the top and
bottom boundaries denote p + ¢ and u — o respectively, and both whiskers
denote the maximum and the minimum respectively.

From the box plots of our results, we make two observations. First, the max-
imum marginal improvement is achieved around 10 < r < 20 for all evaluation

measures. Also, the improvements appear to plateau around r = 50. Second,
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Improvement over Baseline (%)
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Synthetic to Real Data Ratio (r)

Figure 4.4: Plotting of data augmentation benefits on slot filling over synthetic

data to real data ratio.

Improvement over Baseline (%)

20 |-

10 -
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Synthetic to Real Data Ratio (r)

Figure 4.5: Plotting of data augmentation benefits on semantic frame parsing

over synthetic data to real data ratio.
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The variance starts off relatively small when r < 1, but it quickly grows as
r increases and peaks around 5 < r < 20. The variance appears to shrink
again after » > 20. A plausible explanation for the apparent trend of the vari-
ance is that increasing r enhances the chance to generate performance-boosting
key utterances, until no novel instances of such utterances are samplable from
the generator, at which point further increasing r only increases the chance to
generate already known utterances, thereby reducing the variance. This also

explains the plateauing phenomenon.

4.5 Summary

In this paper, we formulated the generic framework for generative data augmen-
tation (GDA) and derived analytically the most effective sampling approach for
generating performance-boosting instances from our proposed generative model,
Joint Language Understanding Variational Autoencoder (JLUVA). Based on
the positive experimental results, we believe that our approach could bring im-
mediate benefits to SLU researchers and the industry by reducing the cost of
building new SLU datasets and improve performances of existing SLU models.
Although our work has primarily been motivated by the data issues in SLU
datasets, we would like to invite researchers to explore the potential of apply-
ing GDA in other NLP tasks, such as neural machine translation and natural
language inference. Similar to the work done by Dao et al. on the analysis of
class-preserving transformative DAs using the kernel theory (Dao et al., 2018),
our work also calls for deeper theoretical analysis on the mechanism of data-
centric regularization techniques. We wish to address these issues in our future

work.
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Chapter 5

Complex Data: Dialogue State Tracking

5.1 Introduction

In contrast to text classification or natural language understanding, the ability
to understand conversations and generate appropriate responses given a con-
versational context can be considered the hallmark of artificial intelligence, as
it transcends all tasks in the NLP domain (Bengio, 2017). As an intermediate
step towards the ultimate goal of realizing conversational agents, the study of
task-oriented dialogues had been proposed in the past. The practicality and the
availability of datasets have garnered interest in task-oriented dialogue model-
ing from the NLP community in recent years.

Although fully annotated task-oriented dialogue datasets were made avail-
able by various researchers (Wen et al., 2017; El Asri et al., 2017) over the years,
there will always be a shortage of labeled dialogue datasets due to the the ne-
cessity of having domain-specific datasets, sparseness of dialogue acts and the
significant labor cost of collecting, annotating and validating dialogue corpora.
The ability to generate novel dialogue samples without supervision could not
only help with directly boosting the downstream supervised learning tasks but
also be utilized for assisting data collection and annotation process, thereby
reducing the construction cost.

In this chapter, we intend to explore the feasibility and limitation of bringing
generative data augmentation in the domain of task-oriented dialogue modeling,

initiating a new paradigm of generating fully annotated dialogue samples for
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various tasks.

Recent approaches for language-driven dialogue modeling is largely based on
the recurrent neural network (RNN) architecture (Vinyals and Le, 2015; Shang
et al., 2015; Li et al., 2017), while some more recent works have employed
variational inference (Serban et al., 2017; Park et al., 2018; Bak and Oh, 2019).
Although VAESs offer us several advantanges, i.e. rich representations and the
capability of modeling variability in linguistic or higher-level features, they can
fall into a local optimum where they fail to encode meaningful representations,
also known as the posterior collapse or the degeneration phenomenon (Bowman
et al., 2016; Chen et al., 2016a; He et al., 2019). Posterior collapse, specifically
inference collapse, is mainly caused by teacher-forcing training of autoregressive
decoders, inducing the decoders’ strong reliance on autoregressive signals rather
than the information provided by the encoder. Dropout-based measures have
been proposed to reduce the risk of posterior collapse such as word dropouts
(Bowman et al., 2016) and utterance dropouts (Park et al., 2018); however,
the problems of these measures are two-folds when applied to deep hierarchical
latent variable models. First, the trade-off between posterior collapse mitigation
and the decoder performance present in autoregressive dropouts exacerbates the
optimization complexity. Second, the employment of dropout measures do not
guarantee elimination of the risk of posterior collapse.

In this work, we not only propose a novel latent variable model that is capa-
ble of learning the joint distribution of lingusitic and the underlying structured
features of goal-oriented dialogues, but we also devise novel training policies for

degeneration alleviation. The summary of the contributions are as follows.

e We propose Variational Hierarchical Goal-oriented Dialogue Autoencoder
(VHDA), a deep latent variable model for generating both dialogue utter-
ances and the complete aspect of underlying dialogue acts and features.

We show that not only the training of the deep hierarchical variational
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model is feasible, but the model shows good generalizability, generating

coherent and diverse samples.

e In the process of realizing the deep variational model, we propose and
employ two novel measures for reducing the risk of posterior collapse, a

phenomenon where VAEs fully or partially fail to autoencode.

o Experiments on multiple datasets and dialogue state tracking models are
conducted to confirm the benefits of data augmentation on the state track-

ing task.

The rest of the chapter is structured as follows. Section 5.2 summarizes the
related work on task-oriented dialogue modeling. Section 5.3 describes our pro-
posed model and relevant techniques in details, including the novel measures
related to reducing the risk of posterior collapse. Section 5.4 provides all details
regarding the experiments on our model, including data augmentation experi-
ments on dialogue state tracking and ablation studies. In the final section, we

summarize the chapter and offer limitations and future work.

5.2 Background and Related Work

5.2.1 Task-oriented Dialogue

In this section, we formalize the problem setting of modeling task-oriented di-
alogues. Task-oriented dialogues (TOD) or goal-oriented dialogues are a subset
of general conversational dialogues, in which two participants (a user and a sys-
tem) partake in asymmetric interaction to resolve common goals. Interaction
asymmetry arises from the difference in the information sources accessible by
the two parties (e.g. the system has the privilege to access an internal database
of restaurants or the system is able to take exclusive actions such as book restau-

rants on an internal reservation system), hence the parties are incentivized to
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interact verbally. The goal of the user is to obtain particular information from
the system or request the system to take certain actions that only the system
is able to. On the other hand, the goal of the system is to provide appropriate
information when requested and take appropriate system actions when they are
deemed necessary. All communications of requests and transfer of information
must be carried out via language, hence TODs usually take multiple interac-
tive turns to completely resolve user goals in a session. In order to successfully
carry out a task-oriented interactive session with the user, the system must be

capable of performing several key factors:

1. User Utterance Understanding. Given a history of interactions (ut-
terances, system acts, etc.) in a session, the system must be capable of

infer context-sensitive semantics from a user utterance.

2. User Goal Inference. Based on the history of interactions and the se-
mantics of the current user utterance, the system must also be able to

infer the session-wide goals of the user.

3. System Action Prediction. Taking all the information into account,
including past utterances, past system acts, inferred current user utter-
ance semantics, and inferred user goals, the system must hold an optimal
policy of system actions that are geared towards resolving the user goals

as efficiently as possible.

As evident from these factors, task-oriented dialogue modeling encompasses
multiple sub-tasks, such as dialogue state tracking (DST) and user simu-
lation. In DST, the task is to extract semantics from a user utterance as well as
the dialogue-wide goals of the user, which are called the goal states or belief

states depending on the literature.
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5.2.2 Dialogue State Tracking.

Dialogue state tracking (DST) is the task of predicting the user’s current goals
and dialogue acts given the context of the dialogue. Historically, DST models
relied on hand-crafted finite-state automata to emulate humans in conversa-
tions (Dybkjeer and Minker, 2008) or separate SLU modules to achieve dia-
logue tracking using a two-stage processs (Thomson and Young, 2010; Wang
and Lemon, 2013; Henderson et al., 2014b). Recent approaches combine the
two-stage process into one unified model to directly predict dialogue states
from dialogue features (Zilka and Jurcicek, 2015; Mrksi¢ et al., 2017; Zhong
et al., 2018; Nouri and Hosseini-Asl, 2018; Wu et al., 2019).

Among the integrated single-stage models, the earlier ones relied on delex-
icalization — the act of replacing entities in slots and values with generic tags
using handcrafted semantic dictionaries — to improve generalization. Neural Be-
lief Tracker (NBT) (Mrksi¢ et al., 2017) has been proposed to decrease reliance
on handcrafted semantic dictionaries by reformulating the multi-class classifi-
cation problem to multiple binary classification problems. GLAD (Zhong et al.,
2018) improves upon NBT by introducing global modules (for sharing param-
eters among estimators for slot values) and local modules to learn slot-specific
feature representations. GCE (Nouri and Hosseini-Asl, 2018) improves within
the paradigm of neural belief tracking by forgoing the separation of global and
local modules and letting the unified module to take slot embeddings as the con-
dition, greatly reducing the number of parameters and improving the inference

efficiency.

5.2.3 Conversation Modeling.

Since hierarchical modeling is naturally suitable for the task of dialogue mod-
eling, recent works have explored hierarchically-structured deep networks for

learning and generating conversations (Vinyals and Le, 2015; Serban et al.,
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2016). There have also been considerable efforts to employ variational inference
to increase the modeling capacity and the generation diversity of the models
(Serban et al., 2017; Park et al., 2018; Gu et al., 2018; Shen et al., 2018; Bak
and Oh, 2019). The prominent approach for dialogue modeling was the Markov
assumption (Serban et al., 2017), but recent approaches have converged on
utilizing global latent variables for representating the holistic properties of di-
alogues (Park et al., 2018; Gu et al., 2018; Bak and Oh, 2019), which preserves
long term dependencies in the dialogue. In this work, we employ global latent
variables to maximize the effectiveness in preserving dialogue semantics for data

augmentation.

5.3 Variational Hierarchical Dialogue Autoencoder

(VHDA)

In this section, we describe the proposed latent variable model for generating
goal-oriented dialogue datasets complete with their annotations. To facilitate
in describing our main work, we introduce a set of notations for representing
dialogue-related concepts and offer a short description of the prior work that
uses a hierarchical VAE structure to solely model the linguistic features (Park
et al., 2018). In the rest of the section, we present details and inner workings of
VHDA, which captures not only the linguistic features but also the underlying

structural features simultaneously.

5.3.1 Notations

In this subsection, we establish a set of general notations for describing any

type of goal-oriented dialogues. A goal-oriented dialogue dataset D is a set

of N ii.d goal-oriented dialogue samples {ci,...,cy}, where each c is a se-
quence of dialogue turns (vi,...,vy). Each goal-oriented dialogue turn v is a
.__:lx_-g: _'\-\.:: ok '.
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Figure 5.1: Graphical representation of VHCR (Park et al., 2018).

tuple of speaker information r, the speaker’s goals g, dialogue state s, and the
speaker’s utterance u: v = (r, g, s, u). Each utterance u is a sequence of words
(wl, ey w|u|). Each set of speaker goals g and each dialogue state s are defined
as a set of the smallest unit of dialogue state specification a (Henderson et al.,
2014a), which is a tuple of dialogue act, slot and value defined over the space
of dialogue acts A, slots S, and values V: g = {al, . ,a|g‘}, s = {al, R a|s|},
where a; € (A,S,V). In literature, such as (Henderson et al., 2014a), a is
represented in the human-readable form as <act>(<slot>=<value>), while
multiple a that share the same dialogue act are represented in a similar for-
mat by listing slot-value pairs in the same parentheses, separated by commas:

<act>(<slot1>=<valuel>, ..., <slotN>=<valuelN>).

5.3.2 Variational Hierarchical Conversational RNN

Given a conversation c, Variational Hierarchical Conversational RNN (VHCR)
(Park et al., 2018) models the holistic features of the conversation as well as
individual utterances u using a hierarchical and recurrent VAE model, as shown
in Figure 5.1. In the figure, we assume that the length of a conversation T

is 3. The model introduces global-level latent variables z(®) for encoding the
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Figure 5.2: Graphical representation of VHDA.

high-level structure of the conversation, and local-level latent variables zgu)

responsible for encoding and generating utterances at each turn step ¢. The
local latent variables z(*) are designed to be conditionally dependent on z(®)
and the previous observations, forming a hierarchical structure. This model is
realized by the hidden variables h; that have conditional dependence on the

global information and the hidden variables from the previous timestep h;_1.

5.3.3 Proposed Model

To achieve complete modeling of goal-oriented dialogues, we propose Varia-
tional Hierarchical Dialogue Autoencoder (VHDA) to generate dialogues and
their underlying dialogue annotations simultaneously (Figure 5.2). Similar to
VHCR, we employ a hierarchical latent structure to capture both the holistic

dialogue semantics using the conversation latent variables z(®) and individual
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turn-level features z(") (speaker), z(9) (goal), z(*) (dialogue state), and z(*) (ut-
terance). Motivated by speech act theory (Perrault et al., 1978), we also employ
a hierarchical structure for the turn-level latent variables, in which the utter-
ance latent variables z(*) are dependent on all other latent variables within the
same turn. The model is not only capable of generating linguistic features and
the relevant annotations from a single model, but it is also capable of generating
languages of higher quality and diversity thanks to the effect of joint learning,
which we discuss in Section 5.4.2.

VHDA consists of multiple encoder modules and multple decoder modules,
each responsible for extracting features or generating a particular dialogue fea-
ture. However, multiple encoders share the same sequence-encoding architecture

(but not parameters).

Sequence Encoder Architecture

Given a sequence of variable number of elements X = [xy;...;x,]T € R™*?,
where n is the number of elements, the goal of a sequence encoder is to extract
a fixed-size representation h € R%, where d is the dimensionality of the hid-
den representation. For our implementation, we employ a shallow self-attention
mechanism over hidden outputs of bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) cells produced from taking inputs from the input sequence. We
also allow the attention mechanism to be queried by external variables, enabling
the sequence to be attended according to more specific external factors, such

as attending over a word sequence of an utterance based on a dialogue context:
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H = LSTM(X)
H= [ﬁ;ﬁ] e RXd
a = softmax(W[H; Q" + b) € R"

h=HTa c R?

Here, Q € R™*% is a collection of query vectors of dimensionality d, that
can query each element in the sequence; W € R4 and b € R%T% are learnable
parameters for inferring the attention weights a with given hidden outputs H
and query vectors Q. We encapsulate above operations using the notation ENC,
which takes a sequence of input vectors and query vectors and returns a fixed

sized representation and is defined as follows.

ENC : R™*? x R4 — R?

The architecture of ENC is utilized repetitively for encoding various fea-
tures in dialogues that have dynamic lengths (sequences of words, sequences of

dialogue acts, sequences of turns, etc.).

VHDA Architecture

Our model architecture consists of five sequence encoders (dialogue act encoder
ENC(@ | goal encoder ENC9)| dialogue state encoder ENC®), utterance encoder
ENC™, and conversation encoder ENC(C)), a context encoder ENC(™)  and
four decoders for each dialogue feature (speaker decoder DEC® | goal decoder
DECY, state decoder DEC®), and utterance decoder DEC(), all parameterized

separately. In addition to the conversational latent variables z(¢) and utterance

F '\-.'.“:_1-]5 -:i o=
& - ) [
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latent variables z(*) introduced in the previous subsection, our model also con-
sists of latent variables for the speaker z("), the goal z(9), and the dialogue state
z() at each dialogue turn.

Initially, the global latent variable z(¢) is generated from a standard Gaus-
sian prior: p(z(c)) = N(0,I). At dialogue turn step ¢, VHDA uses the context
encoder ENC(™) to encode the context information h; using (1) the context
information h encoded from the previous turn step ¢t —1 and (2) the information
about all dialogue features (the speaker r, the goal g, the dialogue state s, and

the utterance u) at the current turn step:

Vi-1= [hy—)ﬁh@l%hgs—)ﬁ z@l}

hy = ENC™)(hy_y, v;_)

where vy is the concatenation of all feature representations at the turn
step t. Note that context encoder ENC(**) has a different structure than other
sequence encoders in that it employs uni-directional sequence encoding and
takes inputs from the previous turn step and returns hidden outputs one step
at a time. Here, the hidden representations of the dialogue features h(™), h©),
h(®), and h(® are encoded by the sequence encoders from the respective dialogue
features, which we describe in subsequent subsections.

For the following step, VHDA successively generates latent variables using

a series of inference networks for each turn step ¢:

Y2 (Zgr) ‘V<t7 Z(C)) ( )
po (" |ver 29, 27) = N (11”, 0171)
(9)) (

) =M(

Do (Z§S) ‘V<t7 Z(C)7 Zgr)a Zy

(w) r
p@(zt V<t7Z(C)7Zt 12y 52
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Here, note that the gaussian distribution encoders (u and o) are imple-
mented using multi-layer feedforward networks f that predict the parameters

of gaussian distribution families given all previous conditions:

= 13" (bu,2)
aﬁ”) — softplus ( £ (ht, z<0>))
= £ by, 29, ")
agw  coftpus( £ (e, 2, )
W = 419 (1,59, 27, )
o) = softplus( £ (b, 59, 247, 29
" = 13 (e, 2,27, 27 27

aﬁ“) = softplus (fe(u) (ht, z(c), zgr), zgg), zgs)»

We use the reparameterization trick (Kingma and Welling, 2013) to allow
the samples of latent variables to be computed with standard backpropagation

during training and optimization.

Approximate Posterior Networks

A separate set of parameters, denoted by ¢, approximates posterior distribu-
tions of all latent variables from evidence. The global latent variables z(¢) are
estimated using the conversation encoder based on hidden representations of

all dialogue features.
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@ vy, ... ,VT) = N(,LL(C), J(C)I)

oo
h(®) = ENCE([vy;...,vr])

(9 = fq(f) (h(0)>

o' = softplus( 3 (b))

The rest of the turn-level latent variables are estimated similarly conditioned

on conversation latent variables z(¢) and turn-level hidden factors hy:
0ot 2 10) =N )

45 (2" ‘V<t, 2, h") = N (), 01)

' = 157 (g, 2, nf")

o) = softplus (£ (b, 2, b))

W) = 09 (g 209, )

gﬁ“/) = softplus (f;u) (ht, ISR hg“>>>

Common Encoder Networks

Apart from the recognition networks, common encoders are responsible for en-
coding dialogue features from their respective feature spaces to hidden repre-
sentations that can be understood by the recognition and decoder networks.
Hence the parameters are shared across the recognition and decoder networks.

Specifically, each dialogue feature of h("), h(9), h(*), and h(® is encoded by the
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respective sequence encoder. For speaker information h("), the encoding mech-
anism is achieved by a speaker embedding matrix W) e R”(MXW), where n(")
is the number of participants and d(") is the dimensionality of the speaker em-
bedding. Assuming that the speaker information is given as a one-hot encoded
vector, the speaker embedding is obtained by W(")r.

For goal representation h(@ and dialogue state (or act) representation h(s),
the encoding takes place over two-steps. In the first step, given a set of dialogue
state specifications g = {al, . ,a|g|} ors = {al, . ,a|s|}, a common dialogue
act encoder ENC(® encodes each dialogue act specification into a fixed size
hidden representation h(®. In the second step, the hidden representations of
dialogue act specifications h(® are encoded by the respective encoder into a

fixed size representation for the goal or the dialogue state:

h@ = ENC@ ([ENC (af);...;ENC (of7))])

h(®) = ENCO ([ENC® (af”);...;ENC (of2))])

The encoding of dialogue act specifications is realized by treating the dia-
logue acts as a sequence of tokens delimited by appropriate special words. In
our implementation, we treat dialogue act specifications as sequences of tokens,
e.g. inform(food=indian) becomes inform, (, food, =, indian, and ). Ad-
ditionally, we use GloVe (Pennington et al., 2014) embeddings to obtain hints
about the general token semantics. The utterances are encoded in a similar
fashion, in which we apply the utterance encoder ENC®™ over arrays of word

embeddings:

h®) = ENC® ([wy;.. 5wy )
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Realization Networks

During the decoding step, the series of decoder networks successively decodes
the latent variables into their respective feature spaces, with each successive
decoding taking all latent variables up to the previous hierarchical level as
inputs. Each decoder network is also conditioned on the global latent variable

z(9 and the turn-level hidden variable h.

Do (rt ’V<t7 Z(C) ) Z

r
Do (gt ’V<t> Z(C) y 2Lt "y 2y

(r) (9) _(s) (u)

C
p@(ut‘v<taz( )azt 7Zt 7Zt ’Zt

)
)

Do (St’V<t,Z(C),Z§T)7Z§g),zgs)) — DEC®) ht,Z(c),zy),Zgg),zgsU
)

5.3.4 Posterior Collapse

The tendency of VAE models to lose stabiliity during training and fail to ef-
fectively learn the data distribution is a well-known issue. This phenomenon is
known as posterior collapse, and it has been perceived to be much more common
and challenging to tackle for the NLP tasks than for the vision domain, due
to the autoregressive nature of language modeling and the inherit difficulty of
fitting linguistic representations into Gaussian priors (Xu and Durrett, 2018).
The full details on the theory of posterior collapse in variational autoencoders
are summarized in Appendix A.

In this work, we focus on the techniques to reduce the tendency of our model

to ignore the encoder information and overly rely on the autoregressive hints.

Mutual Information Trick

In terms of information theory, the encoder performance level can be measured

by the amount of information it passes through from the input data to the
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latent variables using mutual information under the posterior distributions:
Ip g, (%,2).

The mutual information trick involves modifying the VAE objective (Equa-
tion 2.3) to encourage the model to preserve the mutual information between

the input data and the latent variables:

Eqs(zlx 102 p(x | 2)] — Dxr(g4(2 | X)[|p(2)) + Ip.g, (%, 2) (5.1)

Since the KL-divergence term in the original ELBO can be decomposed
into the KL-divergence between aggregate posterior gy(z) and the prior p(z)
and the mutual information term (Hoffman and Johnson, 2016), the third term
in Equation 5.1 can be interpreted as counter-balancing the mutual information

term in the KL-divergence term, which can rewritten as:

Bz (zix[l0g p(x | 2)] = Dxr(g0(2)||p(2)) (5:2)

The detailed comparison of the proposed method and previous work on

alleviating the inference collapse phenomenon is available in Appendex B.

Hierarchically-scaled Dropout Scheme

The common techniques for alleviating the inference collapse problem include
(1) annealing the KL-divergence term weight during the initial stage of training
and (2) employing word dropouts to the decoder inputs (Bowman et al., 2016).
In a recent work, utterance-level dropouts were shown to be more effective than
word dropouts (Park et al., 2018).

For our work, we notice that, due to the multi-level hierarchical structure,
word or utterance dropouts are insufficient against inference collapse. How-
ever, employing dropouts for all feature inputs could deteriorate the learning of
lower-level latent variables, as information dropouts stack multiplicatively along

the vertical depth. Hence, we propose employing hierarchically-scaled dropout
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scheme to effectively alleviate the information loss problem. For VHDA, we em-
ploy a dropout factor of 1.6, which is the ratio of the dropout rate of a particular
type of feature over the dropout rate of another one depth above it. The initial
dropout rate (speaker dropout rate) is set to 0.1. Similar ideas have been ex-
plored in the context of multi-class hierarchical classification (Wehrmann et al.,

2018).

5.4 Experimental Results

This section describes the experimental settings for using VHDA as the gen-
erator in generative data augmentation framework for dialogue state tracking
tasks. We conduct both quantitative and qualitative experiments to demon-
strate that the samples generated by our model are not only beneficial towards
training dialogue state trackers but exhibit variability and controlability at var-

ious levels of semantics.

5.4.1 Experimental Settings

The experimental protocol is based on the ones for used for sentence classifi-
cation and spoken language understanding — the generator is trained once, but
synthetic datasets are sampled multiple times with different seeds from the gen-
erator and, for each synthetic dataset, the dialogue state tracker is trained with
the augmented dataset (the original training set and the synthetic dataset))
multiple times again to account for sampling and training variances (Figure
3.2). Training variances are relatively high, compared to other NLP tasks, be-
cause the dialogue state tracking task is evaluated using the joint goal accuracy,
which is calculated based on the turn-level accuracy of accumulated predicted
dialogue states. Specifically, under the same turn-level accuracy, accumulated

dialogue state accuracy could fluctuate wildly, depending on the position of the
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Metric WoZ2.0 DSTC2 MWoZ-R MWoZ-H

# Training Dialogues 600 1,612 1,265 1,282
# Validation Dialogues 200 506 52 120
# Test Dialogues 200 575 64 140
# Turns 4,472 23,354 10,980 6,752
# Tokens 50,264 199,431 132,991 95,562
Avg. Dialgue Length 7.45 14.49 8.68 5.27
Avg. Utternce Length 11.24 8.54 12.11 14.15
# Slots 4 8 24 24
# Values 99 212 335 194

Table 5.1: Statistics of goal-oriented dialogue datasets.

turn-level prediction errors in the dialogue '. During training of VHDAs, we
employ KL-annealing period of 250,000 steps. For data synthesis, we employ
ancestral sampling to generate from the empirical posterior distribution. The

ratio of synthetic data to original data is 1.

Dataset

The standard framework for developing and evaluating dialogue state trackers
has been provided by The Dialogue Systems Technology Challenge (DSTC)
since the introduction of its first iteration (Williams et al., 2013). Under the
framework, dialogue semantics (states and actions) are based on a task on-
tology, such as restaurant booking for DSTC2 (Henderson et al., 2014a) and
WoZ2.0 (Wen et al., 2017) datasets. For this study, we analyze the quality of
the generated task-oriented dialogues and their augmentation effect on dialogue
state tracking specifically on four datasets: WoZ2.0 (or CamRest676), DSTC2,
and two subsets of MultiWoZ (Budzianowski et al., 2018). A brief description

'In an extreme case, an error appearing in the first turn could invalidate all subsequent

predictions.
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of each dataset is as follows.

e Wo0Z2.0: Originally intended for the task of end-to-end dialogue systems
(Wen et al., 2017), WoZ2.0 is a domain-specific goal-oriented dialogue
corpus collected and annotated by crowdworkers using the Wizard-of-Oz
(WOZ) methodology (Kelley, 1984). During collection, the main goal of
the system was to assist users finding a restaurant in the Cambridge,
UK area, according to the user requests and constraints that had to be
communicated by the system through text. This dataset was collected
using DSTC2 as the benchmark. Although the dataset is the smallest
among the goal-oriented dialogue corpora, it has been studied extensively
in the past, and thus the dataset provides a strong ground for comparative

study of dialogue state tracking.

e DSTC2: This dataset was originally released as one of the tasks in Dia-
logue State Tracking Challenge (Henderson et al., 2014a). The structure of
DSTC2 is considerably more complex than most other corpora, due to the
extensive consideration gone through the collection and design process,
including the consideration of automatic speech recognition (ASR) and
dialogue manager. Different types of ASR models and dialogue managers
have been considered during the collection, allowing models developed on
top of the dataset to be trained and evaluated with different simulated
environments. Note that DSTC2 had been collected from human-machine
interactions, in contrast to human-human interactions as other datasets
had been collected from. Hence, the system responses in DSTC2 are mono-
tonic and lack linguistic variety. As one of the earlier fully annotated and
structured dialogue corpora, the dataset has been the landmark corpus

for dialogue state tracking.
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e MultiWoZ: This relatively large goal-oriented dialogue corpora is
currently the state-of-the-art of publicly available structured dialogue
datasets in terms of size and domain diversity. Similar to Wo0Z2.0 and
DSTC2, MultiWoZ (Budzianowski et al., 2018) contains task-oriented di-
alogues but the domain of the tasks is not limited to single item. As the
name suggests, dialogues could switch from the hotel-booking domain to
another such as taxi-calling and vice versa. However, in this paper, we are
mainly focused on dialogue modeling for single domain scenarios, thus we
extract single-domain dialogues from the dataset by checking all turns for
active dialogue acts. Since the dataset does not explicitly denote active
domains of a particular dialogue, we scan all turns in the dialogue for any
activated domains and we consider a domain active if its related dialogue
acts have been labeled in any of the turns. We extracted two single-domain
subsets (MultiWoZ-R and MultiWoZ-H) that involve restaurant booking
and hotel reservation tasks respectively. The statistics of the extracted

datasets are shown in Table 5.1.

e DialEdit: This dialogue corpora contains conversations between a user

and a wizard on the topic of image editing (Manuvinakurike et al., 2018).

The full statistics of the datasets are shown in Table 5.1.

Evaluation

Adhering to the evaluation framework proposed for past DSTC challenges, we
utilize the following three evaluation measures to quantify the dialogue state

tracking performance:

e Turn Inform Accuracy: the prediction accuracy of the user’s turn-level
dialogue acts, where the act type is inform. This is calculated by dividing

the number of correctly predicted turns with the total number of turns.

87 | |_;



e Turn Request Accuracy: the prediction accuracy of the user’s turn-
level dialogue acts, where the act ytpe is request. This is calculated by
dividing the number of correctly predicted turns with the total number

of turns.

e Joint Goal Accuracy: the prediction accuracy of the user’s goals. User
goals can be derived from the user’s inform-type dialogue acts by accu-
mulating slot-value pairs over the course of the dialogue. If an inform
dialogue act has a slot that has already been specified in one of the previ-
ous turns, then the latter slot-value pair will overwrite the previous ones.
For example, if the user goal in the previous turn contains food=indian
and the current user turn specifies a different food type such as italian,
then the user goal in the current turn is updated to food=italian. Joint
goal accuracy can be calculated by dividing the total number of turns
where the user goals are correctly identified with the total number of

turns.

Dialogue State Tracker

Recent trend in deep learning-based dialogue state tracker is to reformulate
the problem of multi-label classification problem as dynamic multiple binary
classification problems (Mrksi¢ et al., 2017) by encoding the target dialogue act
with a general-purpose pretrained word embeddings, such as GloVe (Pennington
et al., 2014). This is largely motivated by the sparseness of dialogue act labels,
where the number of possible combinations of slot and values far exceeds the
number of annotated turns in a typical domain-specific dataset. Recent deep
learning-based dialogue state trackers have been largely based on Neural Belief
Tracker (Mrksi¢ et al., 2017), such as (Kim et al., 2018a; Zhong et al., 2018;
Nouri and Hosseini-Asl, 2018; Wu et al., 2019). In this work, we select two state-

of-the-art dialogue state trackers as our baseline classifiers: GLAD (Zhong et al.,
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2018) and GCE (Nouri and Hosseini-Asl, 2018). We also consider a simpler
RNN-based dialogue state tracker to explore the effect of data augmentation
on less expressive dialogue state trackers.

Due to the difference in implementation environments, we could not reli-
ably reproduce results for GLAD and GCE reported by the respective authors.
Hence, we have made small modifications to the model architecture described
in the original papers and denoted them with GLAD™ and GCE™) respectively.

The description of each dialogue state tracker is as follows.

e GLAD: Motivated by the lack of parameter sharing across different slots
in NBT, this dialogue state tracker had been proposed by (Zhong et al.,
2018) to use a common sequence encoder architecture that jointly extract
globally and locally aware representations for all sequence-like features

such as dialogue acts and utterances.

e GLAD™: This dialogue state tracker is a variant of GLAD, where we
use FastText (Joulin et al., 2017) in addition to the GloVe and Kazuma
(Hashimoto et al., 2017) embeddings employed by the original model.
Additionally, a dropout layer (dropout rate 0.2) is added after the word
embeddings layer to strengthen the model against noises introduced by

synthetic samples.

e GCE: However, GLAD suffers from a scalability problem with respect
to the number of slots, as the model dedicates an independent set of
parameters for each slot type. GCE (Nouri and Hosseini-Asl, 2018) pro-
posed an improvement on the previous state-of-the-art, where the com-
mon sequence encoder architecture (GLAD encoder) no longer manages
two separate set of parameters for global and local-related features and
uses a unified set of parameters conditioned by slot type embeddings

(which are also encoded using the common sequence architecture). This
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WoZ2.0 DSTC2 MWoZ-R MWoZ-H DialEdit

GDA Model

Goal Req Goal Req Goal Inf Goal Inf Goal Req
- GLADT 87.8  96.8 74.5 96.4 58.9 76.3 33.4 58.9 35.9 96.7
VHDA | GLAD' 88.4 96.6 75.57 96.87| 61.57 77.4 | 37.8% 61.3%| 37.1T o96.8
- GCEt 88.3 97.0 74.8 96.3 60.5 76.7 36.5 61.0 36.1 96.6
VHDA | GCET 89.31 97.1 76.0f 96.77| 63.3 77.2 | 38.3 63.1T| 37.6T 96.8
- RNN 74.5 96.1 69.7 96.0 41.1 69.4 25.7 55.6 35.8 96.6
VHDA | RNN 78.7%  96.7%| 7a.2t o97.0f| a9.6t 73.47| 31.01 59.77| 36.47 96.8
fp<01 *p<0.01

Table 5.2: Results of data augmentation using VHDA for dialogue state tracking

on various datasets and trackers.

relatively small change had a huge impact on the model, hugely improving
the time and space complexities and significantly improving the dialogue

state tracking performance.

GCE™: Similar to GLAD™, this variant also uses an additional source
of pretrained word embeddings (FastText) and employs a dropout layer

after the word embeddings.

RNN: For this simple model, we largely follow the architectural design
of GCE, but we consider a simpler common sequence encoder design,
where variable length sequences are encoded using a set of bidirectional
LSTM cells (Hochreiter and Schmidhuber, 1997) only (without the self-
attention and local-conditioning mechanism). The purpose of this model
is to demonstrate the effectiveness of data augmentation in settings where

the expressive power of the model is not optimal.

5.4.2 Data Augmentation Results

Main Results

We conduct data augmentation experiments to explore the effect of augmenting

dialogue state tracking datasets using synthetic samples generated from VHDA

and report the results on various datasets and trackers as shown in Table 5.2.
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WoZ2.0 DSTC2

GDA Tracker
Goal Request | Goal Request

VHDA w/o goal | GLAD" | 86.5 96.9 4.7 97.0
VHDA GLAD™ | 88.4 96.6 75.5 96.8

VHDA w/o goal | GCE™ 86.4 96.3 75.5 96.7

VHDA GCE* 89.3 97.1 76.0 96.7
VHDA w/o goal | RNN 77.8 96.4 71.2 97.2
VHDA RNN 78.7 96.7 74.2 97.0

Table 5.3: Comparison of data augmentation results between VHDA and VHDA

without explicit goal tracking.

Results show that generative data augmentation for dialogue state tracking is a
viable strategy for improving existing DST models without modifying the clas-
sifier and only augmenting the dataset using synthetic samples from our model.
Regardless of the tracker model and the dataset, improvements were observed
at a statistically significant level in most experimental settings. Surprisingly,
due to the high-variance nature of the joint-goal metric for evaluating dialogue
state tracking performance, some of the improvements with relatively largin
margins (e.g. GCET on MultiWoZ restaurant dataset) had weaker statistical
significance. We posit that in correspondence to the high-variance, conducting
much larger number of trials should improve the statistical confidence; however,
our experiments were constrained by limited computational resources relative
to the huge number of combinatory settings from all of the experiments. The

full results of the data augmentation experiments are included in Appendix C.
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Effect of Joint Goal Tracking

To evaluate and compare the effect of explicitly tracking goal annotations dur-
ing training of dataset modeler, we train a variant of VHDA model, where the
goal tracking mechanism is removed from the generator (denoted by VHDA w/o
goal). In such a model, the latent variables for goal tracking z9) are detached
from the graphical model and the utterance latent variables z(*) are conditioned
on z(9, z(M and z®) only. Synthetic samples are generated from the variant
model and the effect of data augmentation on dialogue state tracking is com-
pared with the original VHDA model. We conduct experiments on WoZ2.0 and
DSTC2 datasets (Table 5.3) and the results show that VDHA without explicit
goal tracking suffers in joint goal accuracy but performs better in turn request
accuracy at certain combinations of tracker and dataset. We conjecture that
explicit goal tracking helps the model to reinforce the long-term goals of the
dialogue participants; however, the model achieves better long-term tracking in
the minor expense of short-term dialogue act tracking, such as request tracking,

which only requires the model to only consider the preceding utterance.

VHDA Ablation Studies

As discussed in Section 5.3.4, the autoregressive nature of the decoder in our
model poses the risk of the decoder ignoring the encoder signals and simply
rely on the autoregressive inputs to predict each feature, essentially falling into
the inference collapse phenomenon. In order to reduce the decoder’s reliance on
autoregressive signals, we have employed hierarchically scaled feature dropouts
(word, utterance, goal, state, and speaker dropouts) (Park et al., 2018; Serban
et al., 2017) and the mutual information trick, which modifies the VAE objective
to encourage the model to preserve the encoder’s information flow. We conduct
ablation studies to show the effects of employing different combinations of the

techniques that reduce the occurrence of inference collapse (Table 5.4). We
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WoZ2.0

GDA  Dropout Objective | KL(®) | Tracker
Goal Request

- - - - GCE* 88.3£0.7  97.0+0.2

VHDA 0.00 Standard 5.63 | GCE™ 84.1£0.9  95.940.6
VHDA 0.00 Modified 5.79 | GCE™ 86.0£0.2  96.1+0.2
VHDA 0.25 Standard 10.44 | GCE™ 88.5£1.4 96.9%0.1
VHDA 0.25 Modified 11.31 | GCE™ 88.9+0.4 97.0+0.2
VHDA 0.50 Standard 14.68 | GCE™ 88.6£1.0 96.9+0.2
VHDA 0.50 Modified 16.33 | GCE* 89.2+0.8  96.940.2

VHDA  hierarchical Standard 14.34 | GCE™* 88.2+1.0 97.14+0.2
VHDA  hierarchical Modified 16.27 | GCE™* 89.3+0.4 97.1+0.2

Table 5.4: Ablation studies for VDHA using GCE™ as the baseline dialogue

state tracker.

report the KL-divergence term of the conversation latent variables z(®) of the
test set data, along with the data augmentation results following the standard
data augmentation protocol. The experimental results support our hypothesis
that the regularization measures have drastically reduced the encoder from
collapsing, maintaing the magnitude of the KL-divergence term at higher-levels,
while achieving better data augmentation results due to improved exploratory
power from having healthier encoders. The worst results were shown by the
VHDA model without any measures, while the best results were achieved by
applying hierarchically scaled dropout scheme in combination with the modified
VAE objective.

Note that the KL-divergence term for the hierarchically scaled dropouts was
not higher than next best performing measures (16.27 and 16.33), suggesting
that having higher KL-divergence terms do not always correlate with the data
augmentation performance or the generation quality. On the contrary, we in-

terpret the results as the hierarchical scaling improving the decoder’s ability

i

-':lx_= _I\.I_._ T

93 =

-
|

(]

« 1]
11



WoZ2.0 DSTC2
Model
BLEU ROUGE ENT | BLEU ROUGE ENT
VHCR 0.301 0.476 0.193 | 0.494 0.680 0.153
VHDA w/o goal | 0.307 0.473 0.195 | 0.590 0.743 0.162
VHDA 0.326 0.499 0.193 | 0.637 0.781 0.154

Table 5.5: Evaluation of models on language quality and diversity.

to generate more coherent data that benefits data augmentation, while encour-
aging the latent variables to be encoded in a tighter sphere (unit Gaussian

prior).

5.4.3 Intrinsic Evaluation - Language Evaluation

To gain deeper insight into the generation capability of VHDA, we compare the
language quality and diversity of generated dialogues with those generated by
the previous state-of-the-art model for dialogue generation (Park et al., 2018).
Following the evaluation protocol employed by previous work (Bak and Oh,
2019; Li et al., 2016; Wen et al., 2017), we use BLEU score (Papineni et al., 2002)
post-processed with the smoothing-7 method (Chen and Cherry, 2014) and
ROUGE-L fl-score (Lin, 2004) to evaluate the linguistic quality of generated
utterances and utterance-level unigram cross-entropy (Serban et al., 2017) (with
respect to the training corpus distribution) for evaluating the information-level
and linguistic diversity of the utterances. Note that our evaluation is conducted
on the dialogue-level 2 rather than on the turn-level, hence turn-level utterance
modeling approaches (Serban et al., 2017) are excluded from the comparison.
Results are shown in Table 5.5.

Compared to the previous state-of-the-art model on conversation modeling,

Zmeaning that the utterances are generated and evaluated in the unit of complete dialogues.
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VHDA is able to generate utterances of higher quality in terms of BLEU and
ROUGE scores. This supports our hypothesis that learning jointly with the
explicit annotation of underlying dialogue structure helps with generating more
realistic utterances and thereby synthesizing realistic dialogues. In terms of
linguistic diversity, it is well-known that the generation quality and diversity
have a trade-off relationship (Huszar, 2015), hence it is expected that our model
is not able to generate the most diverse responses among the other models.
However, we argue that our model is able to generate utterances of best quality

without scrificing linguistic diversity, compared to the language-based model.

5.4.4 Qualitative Results

In order to gain deeper insight into the exploratory power of our model, we ded-
icate this subsection to the qualitative analysis on generated samples produced
by VHDA in multiple aspects.

We first examine the linguistic variability of the generated samples by an-
alyzing variations of the linguistic patterns of random samples. In the follow-
ing subsection, we demonstrate that the conversational latent variables encode
holistic features of dialogues and exhibit controlability when novel dialogs are

decoded from latent variables sampled from the space.

Linguistic Variations

We notice our model generates samples with several different levels of linguisitc
variations. On the word-level, we observe that phrases such as “I'd like to” had
been paraphrased to similar forms that preserve the dialogue semantics, such
as “I want to”. In other cases, “is there anything else I can help you with” was
parapharased to “is there anything else I can help you find” and simple phrases
that express gratitude were used interchangably (e.g. “thank you . bye”, “thank

you . bye bye”). The word-level linguistic variability of generative models had
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Turn | Speaker | Utterance

1 User i am looking for a moderately priced restaurant in the ...
2 Wizard <name> <location> ...would you like their information
3 User i do nt want it . show me another one .

4 Wizard the restaurant <name> is a moderately priced ....

5 User what is the address please

6 Wizard <address>

7 User thanks . could i get the phone number , too

8 Wizard restaurant <name> s phone number is <number>

9 User thank you , goodbye

Table 5.6: A example of utterance-level variation synthesized by VHDA. The

utterance added by our model is underlined.

been observed in language-based VAE models (Gupta et al., 2018; Yang et al.,
2019a), thus exhibition of such characteristics shows that our model, trained
to jointly generate language and relevant annotations, is capable of learning
paraphrastic linguistic patterns as other pure-language generative models.

We also observe context-aware utterance-level variations as shown in Table
5.6. Our model generates variations of utterances (marked by underline) that
preserve the overall dialogue semantics. The example in the table shows that
the utterance “would you like their information”, which was absent in the orig-
inal dialogue piece, was added by our model, complementing the subsequent
response “i don’t want it”, improving the dialogue fluency. This suggests that
the model is capable of comprehending basic level of dialogue semantics.

Finally, we also observe dialogue-level variations in the synethetic samples,
noting the noises in the dialogue progression while preserving the user goal, as
shown in Table 5.8. The synthetic sample has a dialogue progression where the
user seems requests for a cheap restaurant at first, then in the later part of the

dialogue, the users specifies an additional constraint of food type (Vietnamese).
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Turn Speaker Utterance

1 User what s good and cheap ?

2 Wizard there are <number> selections in the cheap price range .
what kind of food were you looking for 7

3 User well how many in the west ?

4 Wizard there are two cheap options in the west side one is an
italian restaurant and the other is vietnamese .

5 User hmm , what s the name of the vietnamese restaurant ?

6 Wizard <name>

7 User is there anything just plain american ?

8 Wizard there are no american places in the west .

9 User can i have the phone number and address of <name>

10 Wizard of course . <name> is located at <location> and can be
reached at <phone>

11 User thank you !

Table 5.7: A real dialogue sample (#27) in WoZ2.0.

Turn Speaker Utterance

1 User i m looking for a cheap restaurant .

2 Wizard i m sorry there are no restaurants matching your prefer-
ences .

User how about vietnamese food ?

4 Wizard yes there are four restaurants with one cheap price range
. do you have a preference ?

5 User i do nt care

6 Wizard how about <name> in the <location> .

7 User can i have the address and postocde 7

8 Wizard the address is at <location> their phone is <phone>

9 User thank you goodbye .

Table 5.8: A synthetic dialogue sample similar to the real dialogue #27.
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This dialogue progression shares the same pattern as the real sample #27 (Table
5.7), which we can compare our synthetic sample with to examine the difference.
From the comparison, we note two things: (1) our model is able to introduce
noises to the dialogue progression while preserving the dynamics of belief states
(price=cheap — food=vietnamese) and linguistic consistency; however, (2) as
noted in prior works on text generation using VAEs (Shin et al., 2019; Yoo et al.,
2019), our model also exhibits the tendency to generate simpler samples, as we
observe that the generated sample in Table 5.8 is shorter and less complex in
terms of dialogue dynamics than the comparable real sample.

Additionally, in the example above, we note that the model has introduced
a subtle logical inconsistency that spans several turns. Specifically, the system
initially does not find any results satisfying the user’s request for a cheap restau-
rant from turn 1, but the system was able to do so for the same request with
an additional constraint of food=vietnamese after few turns later. Such logical
fallacies are not critical in the task of data augmentation for dialogue state
tracking, as the usual problem formulation of DST is to predict dialogue states
given the user utterance in the current turn and the system actions in the turn
preceding the current turn; however, for other downstream applications, such

fallacies might not be ideal and an improvement to the model might be desired.
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z(©)-Interpolation

We conduct z(9-interpolation experiments to demonstrate that our model is
able to generalize the dataset space and learn to decode plausible samples from
unseen latent space. First, we encode two random dialog samples x” and x” onto
the latent space of dialog z(¢) using the our model’s approximate posterior. The
conversation latent vectors of the two data points are interpolated and subject

(c) )

to equidistant samples z7 ’, . .. ,z£f . Then, we observe the decoder outputs gen-
erated from the interpolated latent variable samples (Table 5.9-5.11). The first
anchor sample is shown in Table 5.9 and the second anchor sample is shown
in Table 5.11. The generated sample (shown in Table 5.10) demonstrates that
our model is able to generalize key dialogue features, such as the user goal and
the dialogue length, to generate novel dialogues. One specific example of such
generalization is that since, for the first sample, the user’s goal is to search
for a Mediterranean restaurant and, for the second sample, the user’s goal is
an Indian restaurant, the midpoint between the two latent variables results in
a novel dialogue with no specific preference for food type (food=dontcare).
This behavior by our model supports our hypothesis that the model is capable

of generalizing the latent conversation space and generate novel and coherent

synthetic samples that is beneficial towards data augmentation.

5.5 Summary

In this chapter, we have proposed a novel VAE-based architecture that is both
hierarchical and recurrent in order to accurately capture the semantics of com-
plex datasets, such as fully annotated goal-oriented dialogue datasets. Due to
the highly autoregressive nature of our model’s decoder, the model was prone
to inference collapse. Hence, we devised and employed a simple technique called

the mutual information trick, based on the manipulation of VAE training objec-
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tive, for reducing the chance of inference collapse occurrence without sacrificing
the performance of the decoder. Utilizing the mutual information trick, our pro-
posed model VHDA was able to achieve significant improvement in the task of
generatively augmentating training datasets for dialogue state tracking, using
various competitive dialogue state trackers on various domains. Through qual-
itative analysis of the generated samples, we have gained a deeper insight into
the characteristics of linguistic variations and assured that the latent variables
are controllable, allowing us to better understand the exploratory mechanism
of our model.

Recent works on end-to-end goal-oriented dialogue systems have proposed
using reinforcement learning to incorporate system databases and their inter-
action with the system responses in an end-to-end fashion (Wen et al., 2017;
Williams et al., 2017; Lei et al., 2018). As our qualitative analysis on one of the
generated samples has unearthed the possibility of our model introducing long-
term logical inconsistencies, an end-to-end variational modeling methodology
that incorporates knowledgebase is inevitable for achieving a truly dialogue-
generative model. As future work, we wish to explore an end-to-end knowledge-
based self-supervised generative model that is capable of generating more coher-
ent goal-oriented dialogues. We also wish to explore how goal-oriented dialogue
modeling could benefit other dialogue-related tasks, such as user simulation and

data construction, and not only dialogue state tracking.
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Chapter 6

Conclusion

6.1 Summary

Data augmentation has been one of the well-adopted techniques for boosting
performances of supervised learning tasks without the knowledge of the model
being used. Advances in generative models in recent years due to the wide
adoption of deep variational models has opened up the possibility of leveraging
these models for generating novel samples that could improve supervised learn-
ing. We formalized the notion of generative data augmentation, where samples
generated from latent variable models are used as augmentational material for
the training set. This dissertation started off with an in-depth survey and theo-
retical analysis of data augmentation and subsequently proposed utilizing deep
latent variable models as the generator backbone in generative data augmenta-
tion for NLP tasks. We proposed three distinct VAE-based models for modeling
joint distributions of multi-modal (text and annotations) datasets, achieving im-
provements in the respective tasks on various competitive downstream models
and datasets.

However, autogressive VAEs are notorious for their hyperparameter sensi-
tivity during training and the susceptibility to posterior collapse when learning
text datasets due to the teacher-forcing strategy employed for training linguistic
sequences. With the need to expand VAEs to accomodate structured annota-
tions as additional latent variables, training these complex conditional VAEs

became even a bigger challenge. We proposed three training algorithms and

103 | =



policies that could largely reduce the hyperparameter search space and make
training of VAEs for NLP datasets much more feasible. We successfully applied
the techniques to the training of VAEs for sentence classification datasets and
dialogue state tracking datasets, further improving the generative data aug-
mentation results.

In terms of task exploration, we conducted experiments on spoken language
understanding datasets to investigate whether VAE-based latent variable mod-
els are capable of learning tasks that are inherently require joint-learning (intent
classification and sequence tagging). For the dialog state tracking problem, we
took on the challenge of modeling complex annotated datasets by designing a
hierarchical and recurrent VAE-based model for jointly learning goal-oriented
dialogue distributions. Despite the complexity, we showed that our model, ap-
plied with the proposed training technique for VAEs, was able to learn appro-
priate representations into the dedicated latent variables. Ablation studies in
spoken language understanding experiments unearthed the existence of a hid-
den ceiling of the potential benefit that generative data augmentation can bring
to the downstream models. The studies on artifical data scarcity experiments
highlighted how generative data augmentation could help alleviate resource-
scarce scenarios. Furthermore, another set of ablation studies also revealed the

relationship between augmentational ratio and the improvement margin.

6.2 Limitations

There are few limitations of the approaches proposed in this work.

First, generative data augmentation requires two individual training stages,
which could impose heavy computational cost depending on the application.
However, generative data augmentation allows direct interpretation of interme-
diate augmentation results. Thus, it opens up new ways of utilizing the gener-

ated samples such as the assistance of human construction of NLP datasets.
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Second, due to the fact that deep learning models are generally data-hungry,
certain level of data abundance is required for the latent variable model to func-
tion properly as an ideal generator for data augmentation. This statement may
seem contradictory to one of the motivations of employing generative data aug-
mentation - to combat data scarcity (Chapter 4). Although we did not observe
any performance deterioration during artificial data scarcity experiments, we
conjecture that, below certain levels of available training dataset size, the gen-
erative model could significantly suffer from overfitting.

Third, developing and implementing task-specific latent variable models is
costly, which is the main obstacle to standardized adoption of generative data

augmentation.

6.3 Future Work

In lieu of the limitations, we propose several directions this work could take
in order to further advance the GDA technique for NLP. Since the regulariza-
tion effect is partly attributed to the assumed distribution choice for the prior,
choosing better distributional families for the prior and the posterior of VAE
models could allow further improvements into the generative quality. Some al-
ternative distribution families include Von Mises Fischer (VMF) and arbitrary
distribution modeling using normalizing flow.

On the other hand, the prior knowledge of whether GDA would benefit
the resulting model or not could be useful for performing cost analysis and
decision making. By collecting more samples on the positive cases of generative
data augmentation in various NLP tasks, it would be possible create a predictor
that predicts the magnitude of the benefit a dataset would enjoy from generative
data augmentation based on the dataset features.

As mentioned in the limitations, the intermediate generation samples could

also be used for supervised data collection. It would be interesting to research
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how artificial novel samples could help annotators and data collectors in im-
proving diversity and reducing biases in the constructed datasets (Pannucci and

Wilkins, 2010).
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Appendices

A Posterior Collapse in VAEs

In this appendix, we summarize the current findings on VAE training behav-
iors and offer our own insight by decomposing the objective and exploring the
training dynamics with real examples. Based on the intuition gained from our
findings, we offer a simple methodology to greatly increase the chance of miti-
gating posterior collapse. We compare our training results with previous work
on a hierarchical VAE model and show empirically that VAEs trained with
our algorithm behave stably and produces highly controllable samples. Our al-
gorithm has only two hyperparameters, greatly reducing the hyperparameter
search space compared to the previous work.

The tendency of VAE models to lose stabiliity during training and fail to
effectively learn the data distribution is a well-known issue. This phenomenon is
known as posterior collapse, and it has been perceived to be much more common
and challenging to tackle for the NLP tasks than for the vision domain, due
to the autoregressive nature of language modeling and the inherit difficulty of

fitting linguistic representations into Gaussian priors (Xu and Durrett, 2018).

A.1 A Brief Background

Posterior collapse arises when the approximate posterior g4(z | x) or the model
posterior pg(z | x) collapses to the prior distribution p(z), causing the KL-
divergence term in the ELBO to become 0. The ELBO consists of the re-
construction term and the Kl-divergence term that pressures the approxi-
mate posterior of the latent representation of z to mimic the prior. The KL-

divergence term effectively acts as a regularizer for representation disentangle-
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ment (Burgess et al., 2018). When the VAE is over-applied with the regulariza-
tion, it falls in a local optimum where the KL-divergence loss term is minimized
to 0 and no meaningful data is encoded into latent variable models.

There are two types of posterior collapse: (1) inference collapse occurs when
the approximate posterior collapses with the prior, i.e. ¢4(z) = p(z); while
(2) model collapse is when the model posterior collapses with the prior, i.e.
po(z) = p(z). Inference collapse has been discussed in previous literature (He
et al., 2019; Cremer et al., 2018; Kim et al., 2018b), and the general consensus
is that the approximate posterior usually ”lags” behind the model posterior
in terms of training progress(He et al., 2019). When the disparity between the
two distributions worsens, the encoder will not be motivated to encode the data
into meaningful representations, so the optimizer will gravitate towards a local
optimum where the KL-divergence between the approximate posterior and the
prior is minimal but the reconstruction loss is unoptimized.

This has been a huge problem especially in the NLP domain, as the usual
teacher-forcing technique employed in training recurrent neural networks might
encourage the decoder to overlook the information flow form the encoder and op-
timize autoregressive objectives instead. Hence, it is imperative to be equipped
with appropriate knowledge and tools to closely monitor the training process of
VAEs. The complexity of VAE training unmanageably increases when the VAE
architecture is compositional and contains multiple levels of hierarchicity and
recurrence, such as the ones that are proposed in this chapter and subsequent

chapters.

A.2 Identifying Posterior Collapse

There have been considerable efforts on quantifying and diagnosing posterior
collapse in VAEs, notably (He et al., 2019; Razavi et al., 2019; Cremer et al.,
2018). The simplest method is to examine the KL-divergence term of the ELBO
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Figure 1: An example of ideal training behavior of VAE, which was obtained
from the actual training behavior of LS-VAE, the proposed model for sentence

classification data augmentation.

equation (Bowman et al., 2016), as shown in Figure 1. If the KL-divergence
term is approximately zero, we can suspect with reasonable certainty that in-
ference collapse has occurred. Joint visualization of mean approximate posterior
¢s(2z | x) and mean model posterior py(z | x) is another intuitive method for de-
tecting posterior collapses(He et al., 2019). In the figure (not shown), the two
distributions are plotted against each other for every data sample. The diagram
can not only be used to detect inference collapse but can be used to detect model
collapse and inference gap, in which the discrepancy between the two posteriors
is quantified. However, when one of the posteriors approaches zero, its dimin-
ishing magnitude does not necessarily imply inference or model collapse, as we
need to take the scale of the variance into account. As such, a recent work
(Park et al., 2018) has proposed the utilization of inverse relative variance; by
normalizing the variance of the means to the expected variance, one could get

a clearer picture of the posterior distribution: Var [u]/E [02]. The measure is
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Figure 2: An example of posterior collapse

thought to be closely related to ANOVA (Analysis of Variance). Despite the di-
versity of metrics that have been suggested in the past to provide insights into
the variational inference, they only paint one portion of the the entire picture
of variational behaviors. One of the key to understanding training behaviors of
VAEs, is to examine the following re-write of the ELBO KL-divergence term
(Hoffman and Johnson, 2016):

Expax) [PKL(40(2%)[[p(2))] = Dk1(96(2)p(2)) + Lp,q, (X, 2) (1)

where py is the empirical distribution of x. The derivation of Equation 1
has been covered in (Hoffman and Johnson, 2016; Alemi et al., 2018). The
KL-divergence term rewrite states that it is equivalent to the sum of the mu-
tual information term Ip, 4, (x,z) and the KL-divergence between the aggregate
approzimate posterior qs(z) and the prior of z. As discussed in the previous
subsection, the most common form of detector for posterior collapse is the

measurement of the KL-divergence term; however, from the rewrite, it is appar-

ent that a decreasing KL-divergence term Dxr,(gq(2|x)||p(2z)) might not always
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indicate the occurrence of posterior collapse, as the decrease depends on the
dynamics of the two decomposed terms. In order to gain complete picture of
the training behavior of VAEs, we must observe at least two of the three terms
that constitute the KL-divergence term rewrite (Equation 1).

When we minimize the KL-divergence term, what we really want to do is to
keep the mutual information between x and z maximized while pressuring the
other term to be minimized, i.e. keeping the aggregate of the posterior distri-
butions ¢4(z) to be as similar to p(z) as possible. However, optimization based
on ELBO does not discriminate the constituting terms, causing unintended
side effects such as coalescing minimization of the mutual information term.
Although the reconstruction term in the ELBO should encourage the maxi-
mization of the mutual information term and that it should counter-balance
the minimization pressure from the KL-divergence term, improper balance be-
tween the reconstruction term and the KL-divergence term could cause the
optimizer to continue to even sacrifice the mutual information in order to meet
the objectives.

An example of posterior collapse caused by mutual information collapse is
illustrated in Figure 2. In the figure, the VAE is able to achieve a healthy level
of mutual information for the majority of the training session. However, as the
KL-divergence term between the aggregate posterior and the prior approaches
zero, the mutual information level starts to fall below its previous optimal level,
eventually collapsing to zero after a short period of destabilization. This obser-
vation has inspired us to propose the following idea for completely mitigating

posterior collapse for any training behaviors of VAEs.

A.3 Estimating Mutual Information

The mutual information I. of the data x and the latent variable z under the

DP,q¢

empirical distribution of x and the approximate posterior can be rewritten in
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different forms as follows:

Ip.q, (%,2) = Dkr(4s (%, 2)lg9 (2) p(x)) (2)
= By [Dkr(gs (2 | x)llg5 (2))] (3)
= Ep [Dxr(gy (2 | x)[Ip (2))] — Dxw(gy (2)[|p (2)) (4)

The mutual information equation can be rewritten as the expected KL-
divergence between the posterior and the aggregate posterior (Equation 3) or
as a rearrangement of the ELBO KL-divergence term rewrite in Equation 1
(Equation 4). Both rewrites of the mutual information can be estimated using
Monte Carlo estimation. The key difference between the two approaches is
whether the approach utilizes analytic estimation of the ELBO KL-divergence
term (the first term in Equation 4. In either cases, it are required to estiamte
the aggregate approximate posterior q4(z), which can be estimated using sample

data:

a5 (2) = Exp, [¢0 (z | x)] (5)
1 N
~ N 2@:% (z | x;)

Using the aggregate posterior estimation, the KL-divergence between the

aggregate posterior and the prior can be estimated as well using Monte Carlo

sampling:
Dxw(ge (2)[lp (2)) = E; g,(2) [log g4(2) —log p (2)] (6)
N
]1/2@: log q¢ (z;) — logp (2;))
1 N
NZ (10g2q¢ zi | x;) — logM—logp(zi)) (7)
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Hence, using Equation 7 and the analytic estimate of the ELBO KL-
divergence term, we can estimate the mutual information between the data

and the latent variables:

Ly gy (%, 2) =Ep [Dxr(gs (2 | ¥)||p (2))] — Dxr(ge (2)[|p (2)) (8)

1 N
o ZDKL(% (z | x:)|lp(2))

1 M L
~ Z (logz 44 (zj | x) —log L —logp (zj)> 9)
i k

On the other hand, mutual information estimation can be carried out with-
out utilizing the analytic estimate of ELBO KL-divergence term. We propose

a second approach for mutual information estimation using Equation 3:

Ipgy (%,2) =Ep [Dx1(gs (2 [ ¥) g5 (2))] (10)

1 LM L
ST <10gq¢> (zj | xi) —log »_ qs (25 | x1) +logL>

The key difference between the two approaches is that the second approach
does not take the prior into account. We compare the two estimation methods
on estimating the mutual information of a VAE trained on a simple dataset.
The side-by-side comparison is shown in Figure 3. In the figure, MI-1 and MI-2
denote mutual information estimated using the first approach (Equation 8) and
the second approach (Equation 10) respectively. The figure shows that the vari-
ance is lower in the mutual information estimated using the second approach.
This is attributed to the fact that the first estimation method utilizes the KL-
divergence with the prior, which in turn introduces more sample variances into
the estimation. Hence, for the rest of the paper, we employ the second estima-

tion method to analyze posterior collapse in VAEs.

F '\-.'.“:_1-]5 -:i o=
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Figure 3: Mutual information I, 4, (x,z.) estimations

In practice, we estimate mutual information using data samples in a mini-
batch. We further approximate the estimation by only sampling the latent vari-

able z once for each data sample (M = 1):

| N
Ipq, (%,2) %N Z log gy (z | x;) — logz%(z | x;) 4+ log N (11)

¢ J z~qy(z|x;)

The complete algorithm is shown in Algorithm 2.

A.4 A Simple Technique for Mitigating Posterior Collapse

Based on the intuitions uncovered from the previous section that VAE training
based on the ELBO is in risk of mutual information collapse, we propose a
simple but effective algorithm for mitigating posterior collapse altogether. The
algorithm, called I-VAE, essentially terminates the training session when it
detects certain level of deterioration in the mutual information between x and

z, as shown in Algorithm 3. The main idea is that we want to slowly increase
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input : data samples x1,...,XxN
given : encoder parameters ¢
output: mutual information estimate I
Compute posteriors ¢4(z | X1),...,q4(2z | XN) ;
Sample latent variables from the posteriors
z1,...,2N ~ q4(2 | X1),...,q4(2 | XN) ;
Let M be a matrix, where m;; = log q4(2z; | x;) ; // cross logprobs
Initialize s < 0 ;
foreach i in1,...,N do
Compute d < log Z;V e™ii ;
Update s < s +my —d ;
end

return s/N + log N
Algorithm 2: Algorithm for mutual information estimation

the KL-divergence regularization where the weight is determined by a and the
current training iteration, encouraging the encoder and the docoder to freely
explore optimal representations for reconstruction. As we increase the regu-
larization weight, there is a certain point in the training dynamics where the
mutual information between the data and the latent variables deteriorate, as
described in Appendix A.2 and illustrated in Figure 2. For each training step,
the algorithm estimates the mutual information using a Monte Carlo estima-
tion method and keeps track of the maximum mutual information I,,.x for the
entire training session. When the current mutual information level falls below
a certain tolerance level § relative to the maximum MI [,y the algorithm will
prepare for training termination. However, to account for turbulence in mutual
information estimation, we employ the patience technique where we wait for
T steps before we confirm that the mutual information level has fallen. The

algorithm returns the parameters § and ¢ of the last model where the mutual
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input : KL-divergence annealing rate «, tolerance [, patience 7
output: model parameters 6, ¢
Initialize parameters 6, ¢;
Initialize [ax < 0, Ifna < O ;
Initialize patience counter ¢ <— 0 ;
while stopping criterion unfulfilled do
Sample a mini-batch x1,...,xy ~ pq(x) ; // standard VAE
training
Update 6, ¢ using gradients from Vy 4 va L(x;;,0,0);
/* check for stopping criterion */
Compute MC estimation of I < EstimateMI(x1,...,xn;®) ;
if I > I,,,, then
Update Iax < I ;
Reset the patience counter ¢ < 0;
end
if I < (1—0)- L. then
Update Igna < I if the patience counter is zero ;
if ¢ > 7 then
terminate training ;
end

c+—c+1;

end
else
Reset the patience counter ¢ < 0 ; // rebound

end

end

return ¢, ¢ of the model when Ify,q, was last updated
Algorithm 3: Algorithm for training I-VAE
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information was within the tolerance bounds (1 — ) « Ijpax < I < Ijjax. The
detailed method for estimating mutual information is discussed in Appendix

A3.

B Relation of the Mutual Information Trick to
Other Methods

As a remedy to posterior collapse, (Bowman et al., 2016) proposed KL-
divergence annealing, gradually increasing the weight of the KL-divergence
term, allowing the model to develop autoencoding capability in the early stage
of training. Orthogonal to the KL-divergence annealing technique is the mod-
ified training objective proposed for -VAE (Higgins et al.), where the KL-
divergence term is weighted a hyperparameters 8. Our algorithm encompasses
both intuitions of (Higgins et al.) and (Bowman et al., 2016), as the algorthm
usually terminates before complete anneal of the KL-divergence term, produc-
ing the effect of applying the KL-divergence regularization pressure 5 < 1.
However, we could increase o in I-VAE to the point where the effect is equiva-
lent to 5 > 1, but, in practice, text modeling using VAEs suffers from posterior
collapse without early termination for such large magnitudes of 5.

A recent work by (He et al., 2019) proposed subdividing each iteration of
VAE training into aggresive and non-aggresive training stages. In the aggressive
training stage, only the encoder parameters 6 is optimized, while keeping the
decoder parameters constant. The criterion for switching from the aggressive to
the non-aggresive stage is the plateauing of the mutual information level. The
method shares the idea of using mutual information estimations to monitor
the VAE training behavior, but the motivation and the resulting algorithm
differs from ours. Previous work focused on bringing the training progress of

encoder up to par with the decoder, and thus the MI monitoring is only used for

136 | =



aggresive training stage. Some major drawbacks of Aggressive-VAE also limit
its applicability in certain areas. Namely, the increased training complexity in
time and code in implementing Aggressive-VAE and the sufficiency of employing
teacher-forcing (or autoregression) dropout measures for alleviating inference

collapse could be its limitations.

C Full Results on GDA for Dialogue State Tracking

The full results, including the standard deviation and the maximal value of
each set of trials, of conducting generative data augmentation experiments on
various dialogue state tracking datasets are presented in Table 1 and Table 2.
In the table, we have included the full results on the reproduction of dialogue
state trackers as well, allowing the comparison between the original models and

the variants we have modified for our study (Section 5.4.1).
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