4 research outputs found

    Entropy Based Robust Watermarking Algorithm

    Get PDF
    Tänu aina kasvavale multimeedia andmeedastus mahtudele Internetis, on esile kerkinud mured turvalisusest ja piraatlusest. Digitaalse meedia paljundamise ja muutmise maht on loonud vajaduse digitaalse meedia vesimärgistamise järgi. Selles töös on tutvustatud vastupidavaid vesimärkide lisamise algoritme, mis lisavad vesimärgid madala entroopiaga pildi osadesse. Välja pakutud algoritmides jagatakse algne pilt blokkidesse ning arvutatakse iga bloki entroopia. Kõikide blokkide keskmine entroopia väärtus valitakse künniseks, mille järgi otsustatakse, millistesse blokkidesse vesimärk lisada. Kõik blokid, mille entroopia on väiksem kui künnis, viiakse signaali sageduse kujule kasutades Discrete Wavelet Transform algoritmi. Madala sagedusega sagedusvahemikule rakendatakse Chirp Z-Transform algoritmi ja saadud tulemusele LU-dekompositsiooni või QR-dekompositsiooni. Singular Value Decomposition meetodi rakendamisel diagonaalmaatriksile, mis saadi eelmisest sammust, saadakse iga bloki vastav väärtus. Vesimärk lisatakse pildile, liites iga bloki arvutatud väärtusele vesimärgi Singular Value Decomposition meetodi tulemused. Kirjeldatud algoritme testiti ning võrreldi teiste tavapärast ning uudsete vesimärkide lisamise tehnoloogiatega. Kvantitatiivsed ja kvalitatiivsed eksperimendid näitavad, et välja pakutud meetodid on tajumatud ning vastupidavad signaali töötlemise rünnakutele.With growth of digital media distributed over the Internet, concerns about security and piracy have emerged. The amount of digital media reproduction and tampering has brought a need for content watermarking. In this work, multiple robust watermarking algorithms are introduced. They embed watermark image into singular values of host image’s blocks with low entropy values. In proposed algorithms, host image is divided into blocks, and the entropy of each block is calculated. The average of all entropies indicates the chosen threshold value for selecting the blocks in which watermark image should be embedded. All blocks with entropy lower than the calculated threshold are decomposed into frequency subbands using discrete wavelet transform (DWT). Subsequently chirp z-transform (CZT) is applied to the low-frequency subband followed by an appropriate matrix decomposition such as lower and upper decomposition (LUD) or orthogonal-triangular decomposition (QR decomposition). By applying singular value decomposition (SVD) to diagonal matrices obtained by the aforementioned matrix decompositions, the singular values of each block are calculated. Watermark image is embedded by adding singular values of the watermark image to singular values of the low entropy blocks. Proposed algorithms are tested on many host and watermark images, and they are compared with conventional and other state-of-the-art watermarking techniques. The quantitative and qualitative experimental results are indicating that the proposed algorithms are imperceptible and robust against many signal processing attacks

    Properties of digital image watermarking

    Get PDF
    Digital image watermarking techniques have been developed widely in recent years to maintain the broadcasting media and content authentication, broadcast monitoring, copy control, and many other applications. Therefore, many studies have used digital image watermarking to solve these problem. This paper highlights digital image watermarking. It starts with a basic model of digital image watermarking, it discusses the main requirements and applications. Moreover, it reviews some of the techniques and algorithm used in image watermarking. In addition, digital image watermarking attacks are discussed. Lastly, Watermarking evaluation system is described

    Improving the Watermarking Technique to Generate Blind Watermark by Using PCA & GLCM Algorithm

    Get PDF
    For making sure that the multimedia information is not accessed or modified by unauthorized users, several digital techniques have been proposed as per the growth of internet applications. However, the most commonly used technique is the watermarking technique. The spatial domain method and frequency domain method are the two broader categorizations of several watermarking techniques proposed over the time. The lower order bits of cover image are improved for embedding a watermark through the spatial domain technique. Minimizing the complexity and including minimum computational values are the major benefits achieved through this technique. However, in the presence of particular security attacks, the robustness of this technique is very high. Further, the techniques that use some invertible transformations such as Discrete Cosine Transform (DCT) are known as the frequency domain transform techniques. The image is hosted by applying Discrete Fourier transforms (DFT) and Discrete Wavelet Transform (DWT) techniques. The coefficient value of these transforms is modified as per the watermark for embedding the watermark within the image easily. Further, on the original image, the inverse transform is applied. The complexity of these techniques is very high. Also, the computational power required here is high. The security attacks are provided with more reverts through these methods. GLCM (Gray Level Co Occurrence Matrix) technique is better approach compare with other approach. In this work, GLCM (Gray Level Co Occurrence Matrix) and PCA (Principal Component Analysis) algorithms are used to improve the work capability of the neural networks by using watermarking techniques. PCA selects the extracted images and GLCM is used to choose the features extracted from the original image. The output of the PCA algorithm is defined by using scaling factor which is further used in the implementation. In this work, the proposed algorithm performs well in terms of PSNR (Peak Signal to Noise Ratio), MSE (Mean Squared Error), and Correlation Coefficient values. The proposed methods values are better from the previous work

    A DCT-BASED Digital Watermarking Algorithm for Image

    No full text
    corecore