10,052 research outputs found

    A Thesis: A CRYPTOGRAPHIC STUDY OF SOME DIGITAL SIGNATURE SCHEMES.

    Get PDF
    In this thesis, we propose some directed signature schemes. In addition, we have discussed their applications in different situations. In this thesis, we would like to discuss the security aspects during the design process of the proposed directed digital signature schemes. The security of the most digital signature schemes widely use in practice is based on the two difficult problems, viz; the problem of factoring integers (The RSA scheme) and the problem of finding discrete logarithms over finite fields (The ElGamal scheme). The proposed works in this thesis is divided into seven chapters

    A survey on group signature schemes

    Get PDF
    Group Signature, extension of digital signature, allows members of a group to sign messages on behalf of the group, such that the resulting signature does not reveal the identity of the signer. Any client can verify the authenticity of the document by using the public key parameters of the group. In case of dispute, only a designated group manager, because of his special property, is able to open signatures, and thus reveal the signer’s identity. Its applications are widespread, especially in e-commerce such as e-cash, e-voting and e-auction. This thesis incorporates the detailed study of various group signature schemes, their cryptographic concepts and the main contributions in this field. We implemented a popular group signature scheme based upon elliptic curve cryptosystems. Moreover, the group signature is dynamic i.e. remains valid, if some members leave the group or some new members join the group. Full traceability feature is also included in the implemented scheme. For enhanced security the the scheme implements distributed roles of the group manager. We also analysed various security features, formal models, challenges and cryptanalysis of some significant contributions in this area

    Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices

    Get PDF
    Networks are evolving toward a ubiquitous model in which heterogeneous devices are interconnected. Cryptographic algorithms are required for developing security solutions that protect network activity. However, the computational and energy limitations of network devices jeopardize the actual implementation of such mechanisms. In this paper, we perform a wide analysis on the expenses of launching symmetric and asymmetric cryptographic algorithms, hash chain functions, elliptic curves cryptography and pairing based cryptography on personal agendas, and compare them with the costs of basic operating system functions. Results show that although cryptographic power costs are high and such operations shall be restricted in time, they are not the main limiting factor of the autonomy of a device

    I2PA : An Efficient ABC for IoT

    Get PDF
    Internet of Things (IoT) is very attractive because of its promises. However, it brings many challenges, mainly issues about privacy preserving and lightweight cryptography. Many schemes have been designed so far but none of them simultaneously takes into account these aspects. In this paper, we propose an efficient ABC scheme for IoT devices. We use ECC without pairing, blind signing and zero knowledge proof. Our scheme supports block signing, selective disclosure and randomization. It provides data minimization and transactions' unlinkability. Our construction is efficient since smaller key size can be used and computing time can be reduced. As a result, it is a suitable solution for IoT devices characterized by three major constraints namely low energy power, small storage capacity and low computing power

    Cryptographic Energy Costs are Assumable in Ad Hoc Networks

    Get PDF
    Performance of symmetric and asymmetric cryptography algorithms in small devices is presented. Both temporal and energy costs are measured and compared with the basic functional costs of a device. We demonstrate that cryptographic power costs are not a limiting factor of the autonomy of a device and explain how processing delays can be conveniently managed to minimize their impact
    corecore