6,635 research outputs found

    A cross-layer quality-oriented energy-efficient scheme for multimedia delivery in wireless local area networks

    Get PDF
    Wireless communication technologies, although emerged only a few decades ago, have grown fast in both popularity and technical maturity. As a result, mobile devices such as Personal Digital Assistants (PDA) or smart phones equipped with embedded wireless cards have seen remarkable growth in popularity and are quickly becoming one of the most widely used communication tools. This is mainly determined by the flexibility, convenience and relatively low costs associated with these devices and wireless communications. Multimedia applications have become by far one of the most popular applications among mobile users. However this type of application has very high bandwidth requirements, seriously restricting the usage of portable devices. Moreover, the wireless technology involves increased energy consumption and consequently puts huge pressure on the limited battery capacity which presents many design challenges in the context of battery powered devices. As a consequence, power management has raised awareness in both research and industrial communities and huge efforts have been invested into energy conservation techniques and strategies deployed within different components of the mobile devices. Our research presented in this thesis focuses on energy efficient data transmission in wireless local networks, and mainly contributes in the following aspects: 1. Static STELA, which is a Medium Access Control (MAC) layer solution that adapts the sleep/wakeup state schedule of the radio transceiver according to the bursty nature of data traffic and real time observation of data packets in terms of arrival time. The algorithm involves three phases– slow start phase, exponential increase phase, and linear increase phase. The initiation and termination of each phase is self-adapted to real time traffic and user configuration. It is designed to provide either maximum energy efficiency or best Quality of Service (QoS) according to user preference. 2. Dynamic STELA, which is a MAC layer solution deployed on the mobile devices and provides balanced performance between energy efficiency and QoS. Dynamic STELA consists of the three phase algorithm used in static STELA, and additionally employs a traffic modeling algorithm to analyze historical traffic data and estimate the arrival time of the next burst. Dynamic STELA achieves energy saving through intelligent and adaptive increase of Wireless Network Interface Card (WNIC) sleeping interval in the second and the third phase and at the same time guarantees delivery performance through optimal WNIC waking timing before the estimated arrival of new data burst. 3. Q-PASTE, which is a quality-oriented cross-layer solution with two components employed at different network layers, designed for multimedia content delivery. First component, the Packet/ApplicaTion manager (PAT) is deployed at the application layer of both service gateway and client host. The gateway level PAT utilizes fast start, as a widely supported technique for multimedia content delivery, to achieve high QoS and shapes traffic into bursts to reduce the wireless transceiver’s duty cycle. Additionally, gateway-side PAT informs client host the starting and ending time of fast start to assist parameter tuning. The client-side PAT monitors each active session and informs the MAC layer about their traffic-related behavior. The second component, dynamic STELA, deployed at MAC layer, adaptively adjusts the sleep/wake-up behavior of mobile device wireless interfaces in order to reduce energy consumption while also maintaining high Quality of Service (QoS) levels. 4. A comprehensive survey on energy efficient standards and some of the most important state-of-the-art energy saving technologies is also provided as part of the work

    Cross Layered Network Condition Aware Mobile-Wireless Multimedia Sensor Network Routing Protocol for Mission Critical Communication

    Get PDF
    The high pace emergence in wireless technologies have given rise to an immense demand towards Quality of Service (QoS) aware multimedia data transmission over mobile wireless multimedia sensor network (WMSN). Ensuring reliable communication over WMSN while fulfilling timely and optimal packet delivery over WMSN can be of great significance for emerging IoT ecosystem. With these motivations, in this paper a highly robust and efficient cross layered routing protocol named network condition aware mobile-WMSN routing protocol (NCAM-RP) has been developed. NCAM-RP introduces a proactive neighbour table management, congestion awareness, packet velocity estimation, dynamic link quality estimation (DLQE), and deadline sensitive service differentiation based multimedia traffic prioritization, and multi-constraints based best forwarding node selection mechanisms. These optimization measures have been applied on network layer, MAC layer and the physical layer of the protocol stack that eventually strengthen NCAM-RP to enable QoS-aware multimedia data transmission over WMSNs. The proposed NCAM-RP protocol intends to optimize real time mission critical (even driven) multimedia data (RTMD) transmission while ensuring best feasible resource allocation to the non-real time (NRT) data traffic over WMSNs. NCAM-RP has outperform RPAR based routing scheme in terms of higher data delivery, lower packet drops and deadline miss ratio. It signifies that NCAM-RP can ensure minimal retransmission that eventually can reduce energy consumption, delay and computational overheads. Being the mobility based WMSN protocol, NCAM-RP can play significant role in IoT ecosystem

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation
    • 

    corecore