38,456 research outputs found

    Semi-Supervised Speech Emotion Recognition with Ladder Networks

    Full text link
    Speech emotion recognition (SER) systems find applications in various fields such as healthcare, education, and security and defense. A major drawback of these systems is their lack of generalization across different conditions. This problem can be solved by training models on large amounts of labeled data from the target domain, which is expensive and time-consuming. Another approach is to increase the generalization of the models. An effective way to achieve this goal is by regularizing the models through multitask learning (MTL), where auxiliary tasks are learned along with the primary task. These methods often require the use of labeled data which is computationally expensive to collect for emotion recognition (gender, speaker identity, age or other emotional descriptors). This study proposes the use of ladder networks for emotion recognition, which utilizes an unsupervised auxiliary task. The primary task is a regression problem to predict emotional attributes. The auxiliary task is the reconstruction of intermediate feature representations using a denoising autoencoder. This auxiliary task does not require labels so it is possible to train the framework in a semi-supervised fashion with abundant unlabeled data from the target domain. This study shows that the proposed approach creates a powerful framework for SER, achieving superior performance than fully supervised single-task learning (STL) and MTL baselines. The approach is implemented with several acoustic features, showing that ladder networks generalize significantly better in cross-corpus settings. Compared to the STL baselines, the proposed approach achieves relative gains in concordance correlation coefficient (CCC) between 3.0% and 3.5% for within corpus evaluations, and between 16.1% and 74.1% for cross corpus evaluations, highlighting the power of the architecture

    Towards Speech Emotion Recognition "in the wild" using Aggregated Corpora and Deep Multi-Task Learning

    Get PDF
    One of the challenges in Speech Emotion Recognition (SER) "in the wild" is the large mismatch between training and test data (e.g. speakers and tasks). In order to improve the generalisation capabilities of the emotion models, we propose to use Multi-Task Learning (MTL) and use gender and naturalness as auxiliary tasks in deep neural networks. This method was evaluated in within-corpus and various cross-corpus classification experiments that simulate conditions "in the wild". In comparison to Single-Task Learning (STL) based state of the art methods, we found that our MTL method proposed improved performance significantly. Particularly, models using both gender and naturalness achieved more gains than those using either gender or naturalness separately. This benefit was also found in the high-level representations of the feature space, obtained from our method proposed, where discriminative emotional clusters could be observed.Comment: Published in the proceedings of INTERSPEECH, Stockholm, September, 201

    Speech-based recognition of self-reported and observed emotion in a dimensional space

    Get PDF
    The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance

    Exploring Language-Independent Emotional Acoustic Features via Feature Selection

    Full text link
    We propose a novel feature selection strategy to discover language-independent acoustic features that tend to be responsible for emotions regardless of languages, linguistics and other factors. Experimental results suggest that the language-independent feature subset discovered yields the performance comparable to the full feature set on various emotional speech corpora.Comment: 15 pages, 2 figures, 6 table

    Learning spectro-temporal features with 3D CNNs for speech emotion recognition

    Get PDF
    In this paper, we propose to use deep 3-dimensional convolutional networks (3D CNNs) in order to address the challenge of modelling spectro-temporal dynamics for speech emotion recognition (SER). Compared to a hybrid of Convolutional Neural Network and Long-Short-Term-Memory (CNN-LSTM), our proposed 3D CNNs simultaneously extract short-term and long-term spectral features with a moderate number of parameters. We evaluated our proposed and other state-of-the-art methods in a speaker-independent manner using aggregated corpora that give a large and diverse set of speakers. We found that 1) shallow temporal and moderately deep spectral kernels of a homogeneous architecture are optimal for the task; and 2) our 3D CNNs are more effective for spectro-temporal feature learning compared to other methods. Finally, we visualised the feature space obtained with our proposed method using t-distributed stochastic neighbour embedding (T-SNE) and could observe distinct clusters of emotions.Comment: ACII, 2017, San Antoni
    corecore