4,736 research outputs found

    Three variants Particle Swarm Optimization technique for optimal cameras network two dimensions placement

    Get PDF
    This paper addresses the problem of optimal placement in two-dimensions of the cameras network for the motion capture (MoCap) system. In fact, the MoCap system is a three- dimensional representation environment used mainly to reconstruct a real motion by using a number of fixed cameras (in position and pose). The main objective is to find the optimal placement of all cameras in a minimal time under a major constraint in order to capture each reflector that must be seen by at least three cameras in the same frame in a sequence of a random motion. The two-dimensional representation is only used to solve the problem of reflector recovery. The choice of two-dimensional representation is to reduce the resolution of a three- dimensional recovery problem to a simple two-dimensional recovery, especially if all the cameras have the same height. With this strategy, the placement of cameras network is not treated as an image processing problem. The use of three variants optimization techniques by Particle Swarm Optimization (Standard Particle Swarm Optimization, Weight Particle Swarm Optimization and Canonical Particle Swarm Optimization), allowed us to solve the problem of cameras network placement in a minimal amount of time. The overall recovery objective has been achieved despite the complexity imposed in the third scenario by the Canonical Particle Swarm Optimization variant

    The Application of PSO in Structural Damage Detection: An Analysis of the Previously Released Publications (2005–2020)

    Get PDF
    The structural health monitoring (SHM) approach plays a key role not only in structural engineering but also in other various engineering disciplines by evaluating the safety and performance monitoring of the structures. The structural damage detection methods could be regarded as the core of SHM strategies. That is because the early detection of the damages and measures to be taken to repair and replace the damaged members with healthy ones could lead to economic advantages and would prevent human disasters. The optimization-based methods are one of the most popular techniques for damage detection. Using these methods, an objective function is minimized by an optimization algorithm during an iterative procedure. The performance of optimization algorithms has a significant impact on the accuracy of damage identification methodology. Hence, a wide variety of algorithms are employed to address optimization-based damage detection problems. Among different algorithms, the particle swarm optimization (PSO) approach has been of the most popular ones. PSO was initially proposed by Kennedy and Eberhart in 1995, and different variants were developed to improve its performance. This work investigates the objectives, methodologies, and results obtained by over 50 studies (2005-2020) in the context of the structural damage detection using PSO and its variants. Then, several important open research questions are highlighted. The paper also provides insights on the frequently used methodologies based on PSO, the computational time, and the accuracy of the existing methodologies

    Performance Comparison of PSO and Its New Variants in the Context of VLSI Global Routing

    Get PDF
    Substantial reduction of gate delay occurred in recent times owing to radical decrement of transistor size. The interconnect length and delay are accordingly increased owing to the exponential escalation of packaging density with additional transistors being fabricated on the same chip area. The function of VLSI routing that seems to be more defying to the scholars, is categorized in global routing and detailed routing phase. In global routing phase, the prevalent method to lessen the wire length for reducing interconnect delay is to adjust the cost of the Steiner tree, devised by the terminal nodes to be interconnected. Nevertheless, Steiner tree problem is a NP-complete problem in classical graph theory where meta-heuristics might impart beneficial elucidations. Particle swarm optimization (PSO) is a robust algorithm concerning VLSI routing field. This chapter is regarding the proposal of a self-adaptive mechanism for monitoring acceleration coefficient of PSO and evaluating its functionalities with the existing acceleration coefficient controlled PSO in numerous allocation topologies of terminal nodes within definite VLSI layout. The outcomes of PSO variant with constriction factor in context to VLSI route reduction ability and robustness are also inspected. Additionally, a new effort in adapting the PSO with embracement of genetic algorithm is established
    • …
    corecore