52 research outputs found

    Coupled Spectral Methods in Unbounded Domains and Its Applications

    Get PDF
    谱方法是偏微分方程数值求解的重要数值方法之一,其他主要优点在于:如果方程的精确解无限光滑,那么近似解将以N1N^{-1}的任意幂次速度收敛于精确解,这里NN为所选取的基函数的个数。谱元法是谱方法的延伸,它结合了谱方法的高精度和有限元法灵活的网格剖分技术,正得到越来越广泛的应用。大部分传统的谱(元)方法都是针对有界区域问题。然而在许多实际应用中,我们通常需要处理无界区域问题。实际上,科学和工程中的许多计算问题都是建立在无界区域或外部区域上的。对于该类问题,传统的做法是对区域进行截断,然后引入人工边界,再进行数值求解,这样就会引入相应的误差。因此研究直接求解无界区域问题的数值方法是有意义的。本文...The spectral method is one of the most popular methods in numerically solvingpartial differential equations. The most attractive property of the spectralmethod is that when the solution of the problem is infinitely smooth,the convergence of the spectral method is exponential. Spectral elementmethod, which combines the high-order precisionof spectral methods and the geometrical flexibility of finit...学位:理学博士院系专业:数学科学学院信息与计算数学系_计算数学学号:2005140300

    A seamless, extended DG approach for advection-diffusion problems on unbounded domains

    Full text link
    We propose and analyze a seamless extended Discontinuous Galerkin (DG) discretization of advection-diffusion equations on semi-infinite domains. The semi-infinite half line is split into a finite subdomain where the model uses a standard polynomial basis, and a semi-unbounded subdomain where scaled Laguerre functions are employed as basis and test functions. Numerical fluxes enable the coupling at the interface between the two subdomains in the same way as standard single domain DG interelement fluxes. A novel linear analysis on the extended DG model yields unconditional stability with respect to the P\'eclet number. Errors due to the use of different sets of basis functions on different portions of the domain are negligible, as highlighted in numerical experiments with the linear advection-diffusion and viscous Burgers' equations. With an added damping term on the semi-infinite subdomain, the extended framework is able to efficiently simulate absorbing boundary conditions without additional conditions at the interface. A few modes in the semi-infinite subdomain are found to suffice to deal with outgoing single wave and wave train signals more accurately than standard approaches at a given computational cost, thus providing an appealing model for fluid flow simulations in unbounded regions.Comment: 27 pages, 8 figure

    Efficient hyperbolic-parabolic models on multi-dimensional unbounded domains using an extended DG approach

    Full text link
    We introduce an extended discontinuous Galerkin discretization of hyperbolic-parabolic problems on multidimensional semi-infinite domains. Building on previous work on the one-dimensional case, we split the strip-shaped computational domain into a bounded region, discretized by means of discontinuous finite elements using Legendre basis functions, and an unbounded subdomain, where scaled Laguerre functions are used as a basis. Numerical fluxes at the interface allow for a seamless coupling of the two regions. The resulting coupling strategy is shown to produce accurate numerical solutions in tests on both linear and non-linear scalar and vectorial model problems. In addition, an efficient absorbing layer can be simulated in the semi-infinite part of the domain in order to damp outgoing signals with negligible spurious reflections at the interface. By tuning the scaling parameter of the Laguerre basis functions, the extended DG scheme simulates transient dynamics over large spatial scales with a substantial reduction in computational cost at a given accuracy level compared to standard single-domain discontinuous finite element techniques.Comment: 28 pages, 13 figure

    A numerical study of viscous vortex rings using a spectral method

    Get PDF
    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass

    An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients

    Get PDF
    We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers

    Cumulative reports and publications through December 31, 1990

    Get PDF
    This document contains a complete list of ICASE reports. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    Sommaire / Contents tome 349, janvier–décembre 2011

    Get PDF
    corecore