551 research outputs found

    IMITATOR II: A Tool for Solving the Good Parameters Problem in Timed Automata

    Full text link
    We present here Imitator II, a new version of Imitator, a tool implementing the "inverse method" for parametric timed automata: given a reference valuation of the parameters, it synthesizes a constraint such that, for any valuation satisfying this constraint, the system behaves the same as under the reference valuation in terms of traces, i.e., alternating sequences of locations and actions. Imitator II also implements the "behavioral cartography algorithm", allowing us to solve the following good parameters problem: find a set of valuations within a given bounded parametric domain for which the system behaves well. We present new features and optimizations of the tool, and give results of applications to various examples of asynchronous circuits and communication protocols.Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    A Theory of Formal Synthesis via Inductive Learning

    Full text link
    Formal synthesis is the process of generating a program satisfying a high-level formal specification. In recent times, effective formal synthesis methods have been proposed based on the use of inductive learning. We refer to this class of methods that learn programs from examples as formal inductive synthesis. In this paper, we present a theoretical framework for formal inductive synthesis. We discuss how formal inductive synthesis differs from traditional machine learning. We then describe oracle-guided inductive synthesis (OGIS), a framework that captures a family of synthesizers that operate by iteratively querying an oracle. An instance of OGIS that has had much practical impact is counterexample-guided inductive synthesis (CEGIS). We present a theoretical characterization of CEGIS for learning any program that computes a recursive language. In particular, we analyze the relative power of CEGIS variants where the types of counterexamples generated by the oracle varies. We also consider the impact of bounded versus unbounded memory available to the learning algorithm. In the special case where the universe of candidate programs is finite, we relate the speed of convergence to the notion of teaching dimension studied in machine learning theory. Altogether, the results of the paper take a first step towards a theoretical foundation for the emerging field of formal inductive synthesis

    Falsification of Cyber-Physical Systems with Robustness-Guided Black-Box Checking

    Full text link
    For exhaustive formal verification, industrial-scale cyber-physical systems (CPSs) are often too large and complex, and lightweight alternatives (e.g., monitoring and testing) have attracted the attention of both industrial practitioners and academic researchers. Falsification is one popular testing method of CPSs utilizing stochastic optimization. In state-of-the-art falsification methods, the result of the previous falsification trials is discarded, and we always try to falsify without any prior knowledge. To concisely memorize such prior information on the CPS model and exploit it, we employ Black-box checking (BBC), which is a combination of automata learning and model checking. Moreover, we enhance BBC using the robust semantics of STL formulas, which is the essential gadget in falsification. Our experiment results suggest that our robustness-guided BBC outperforms a state-of-the-art falsification tool.Comment: Accepted to HSCC 202

    Model-based compositional verification approaches and tools development for cyber-physical systems

    Get PDF
    The model-based design for embedded real-time systems utilizes the veriable reusable components and proper architectures, to deal with the verification scalability problem caused by state-explosion. In this thesis, we address verification approaches for both low-level individual component correctness and high-level system correctness, which are equally important under this scheme. Three prototype tools are developed, implementing our approaches and algorithms accordingly. For the component-level design-time verification, we developed a symbolic verifier, LhaVrf, for the reachability verification of concurrent linear hybrid systems (LHA). It is unique in translating a hybrid automaton into a transition system that preserves the discrete transition structure, possesses no continuous dynamics, and preserves reachability of discrete states. Afterward, model-checking is interleaved in the counterexample fragment based specification relaxation framework. We next present a simulation-based bounded-horizon reachability analysis approach for the reachability verification of systems modeled by hybrid automata (HA) on a run-time basis. This framework applies a dynamic, on-the-fly, repartition-based error propagation control method with the mild requirement of Lipschitz continuity on the continuous dynamics. The novel features allow state-triggered discrete jumps and provide eventually constant over-approximation error bound for incremental stable dynamics. The above approaches are implemented in our prototype verifier called HS3V. Once the component properties are established, the next thing is to establish the system-level properties through compositional verication. We present our work on the role and integration of quantier elimination (QE) for property composition and verication. In our approach, we derive in a single step, the strongest system property from the given component properties for both time-independent and time-dependent scenarios. The system initial condition can also be composed, which, alongside the strongest system property, are used to verify a postulated system property through induction. The above approaches are implemented in our prototype tool called ReLIC

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Towards Personalized Prostate Cancer Therapy Using Delta-Reachability Analysis

    Full text link
    Recent clinical studies suggest that the efficacy of hormone therapy for prostate cancer depends on the characteristics of individual patients. In this paper, we develop a computational framework for identifying patient-specific androgen ablation therapy schedules for postponing the potential cancer relapse. We model the population dynamics of heterogeneous prostate cancer cells in response to androgen suppression as a nonlinear hybrid automaton. We estimate personalized kinetic parameters to characterize patients and employ δ\delta-reachability analysis to predict patient-specific therapeutic strategies. The results show that our methods are promising and may lead to a prognostic tool for personalized cancer therapy.Comment: HSCC 201
    • …
    corecore