6 research outputs found

    The opaque square

    Full text link
    The problem of finding small sets that block every line passing through a unit square was first considered by Mazurkiewicz in 1916. We call such a set {\em opaque} or a {\em barrier} for the square. The shortest known barrier has length 2+62=2.6389…\sqrt{2}+ \frac{\sqrt{6}}{2}= 2.6389\ldots. The current best lower bound for the length of a (not necessarily connected) barrier is 22, as established by Jones about 50 years ago. No better lower bound is known even if the barrier is restricted to lie in the square or in its close vicinity. Under a suitable locality assumption, we replace this lower bound by 2+10−122+10^{-12}, which represents the first, albeit small, step in a long time toward finding the length of the shortest barrier. A sharper bound is obtained for interior barriers: the length of any interior barrier for the unit square is at least 2+10−52 + 10^{-5}. Two of the key elements in our proofs are: (i) formulas established by Sylvester for the measure of all lines that meet two disjoint planar convex bodies, and (ii) a procedure for detecting lines that are witness to the invalidity of a short bogus barrier for the square.Comment: 23 pages, 8 figure

    Opaque Sets

    Get PDF
    The problem of finding "small" sets that meet every straight-line which intersects a given convex region was initiated by Mazurkiewicz in 1916. We call such a set an opaque set or a barrier for that region. We consider the problem of computing the shortest barrier for a given convex polygon with n vertices. No exact algorithm is currently known even for the simplest instances such as a square or an equilateral triangle. For general barriers, we present an approximation algorithm with ratio 1/2+ 2 +√2/π=1.5867 ∈. For connected barriers we achieve the approximation ratio 1.5716, while for single-arc barriers we achieve the approximation ratio π+5/π+2 = 1.5834 ∈. All three algorithms run in O(n) time. We also show that if the barrier is restricted to the (interior and the boundary of the) input polygon, then the problem admits a fully polynomial-time approximation scheme for the connected case and a quadratic-time exact algorithm for the single-arc case. © 2012 Springer Science+Business Media New York
    corecore