research

The opaque square

Abstract

The problem of finding small sets that block every line passing through a unit square was first considered by Mazurkiewicz in 1916. We call such a set {\em opaque} or a {\em barrier} for the square. The shortest known barrier has length 2+62=2.6389…\sqrt{2}+ \frac{\sqrt{6}}{2}= 2.6389\ldots. The current best lower bound for the length of a (not necessarily connected) barrier is 22, as established by Jones about 50 years ago. No better lower bound is known even if the barrier is restricted to lie in the square or in its close vicinity. Under a suitable locality assumption, we replace this lower bound by 2+10βˆ’122+10^{-12}, which represents the first, albeit small, step in a long time toward finding the length of the shortest barrier. A sharper bound is obtained for interior barriers: the length of any interior barrier for the unit square is at least 2+10βˆ’52 + 10^{-5}. Two of the key elements in our proofs are: (i) formulas established by Sylvester for the measure of all lines that meet two disjoint planar convex bodies, and (ii) a procedure for detecting lines that are witness to the invalidity of a short bogus barrier for the square.Comment: 23 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions